
ADVANCED PROGRAMMING
(BETC 1353)

WEEK 6: UNIONS, BIT MANIPULATIONS
AND ENUMERATIONS

AIMAN ZAKWAN BIN JIDIN
aimanzakwan@utem.edu.my

Learning Outcomes

At the end of this session, you should be able:

• To manipulate data using bitwise operators

• To use bit fields in C++ programs

• To use enumeration constants in C++
programs

• To use unions in C++ programs

Bitwise Operators
• Operators that are useful for

manipulating bits of data

• Examples of manipulating bits:

– Get a bit in a byte

– Turn ON/OFF one or several bits

1 1 1 1 1 11 1

1 1 0 1 1 11 1

Turn of f a bit

Bitwise Operators
Operator Description

& Perform AND operation on every single bit (the same
position) of the operands.

| Perform OR operation on every single bit (the same
position) of the operands.

^ Perform EXCLUSIVE OR (XOR) operation on every single
bit (the same position) of the operands.

~ Complement operator which inverts all the bit of the
operand.

<< Shift left operator that shifts the bits of the data one or
several positions to the left. The bits shifted off the left
side are removed.

>> Shift rightoperator that shifts the bits of the data one or
several positions to the right. The bits shifted off the
right side are removed.

AND Bitwise Operator

operand1 & operand2

• Performing AND operation on each bit of the
same position of both operands.

• Example:

a = 82; a = 0101 0010

b = 155;  & b = 1001 1011

c = a&b; c = 0001 0010

OR Bitwise Operator

operand1 | operand2

• Performing AND operation on each bit of the
same position of both operands.

• Example:

a = 82; a = 0101 0010

b = 155;  | b = 1001 1011

c = a|b; c = 1101 1011

XOR Bitwise Operator

operand1 | operand2

• Performing XOR operation on each bit of the
same position of both operands.

• Example:

a = 82; a = 0101 0010

b = 155;  ^ b = 1001 1011

c = a^b; c = 1100 1001

Complement Bitwise Operator

~ operand

• Inverting all bits of the operand:

– 1 become 0

– 0 become 1

• Example:

a = 72;  a = 0100 1000

b = ~a;  b = 1011 0111 (183)

Shift Left Bitwise Operator

operand << n

• Shifting all bits in operand to the left by n
positions.

• The bit(s) shifted off the left side are removed.

• Example:

a = 70;  a = 0100 0110

b = a<<3;  b = 0011 0000

Shift Right Bitwise Operator

operand >> n

• Shifting all bits in operand to the right by n
positions.

• The bit(s) shifted off the right side are
removed.

• Example:

a = 70;  a = 0100 0110

b = a>>2;  b = 0001 0001

Examples of Bit Manipulations
0101 0001 <- 81
0110 0011 <- 99

&
0100 0001 -> 65

81 & 99 ?

0101 0001 <- 81
0110 0011 <- 99

|
0111 0011 -> 115

81 | 99 ?

0101 0001 <- 81
0110 0011 <- 99

^
0011 0010 -> 50

81 ^ 99 ?

Try Yourself!

#include <iostream>

using namespace std;

int main()

{

unsigned char x = 81;

unsigned char y = 99;

unsigned char z;

z = x & y;

cout << x << " & " << y << " = "

<< (int) z << endl;

z = x | y;

cout << x << " | " << y << " = "

<< (int) z << endl;

z = x ^ y;

cout << x << " ^ " << y << " = "

<< (int) z << endl;

return 0;

}

bitwise.cpp

Inverting Bits
1000 1010 <- 138

~
0111 0101 -> 117

char x = 138;

~x?

Try Yourself!

#include <iostream>

using namespace std;

int main()

{

char x = 138;

char y;

y = ~x;

cout << (int) y << endl;

return 0;

}

complem.cpp

Unions

• Lets programmers share memory spaces for
several kinds of data

• For example:
union data

{

short x;

char y;

char z[5];

};

x

y

z

Memory spaces for
storing x, y or z

Only one of them
exists at once.

Therefore, a union is
different with a

struct

Try Yourself!

union.cpp#include <iostream>

#include <cstring>

using namespace std;

int main()

{

union data

{

short x;

char y;

char z[5];

};

data d;

d.x = 12345;

cout << d.x << endl; // Ok

cout << d.y << endl; // ????

cout << d.z << endl; // ????

cout << "---------" << endl;

d.y = 'A';

cout << d.x << endl; // ????

cout << d.y << endl; // Ok

cout << d.z << endl; // ????

cout << "---------" << endl;

strcpy(d.z, "test");

cout << d.x << endl; // ????

cout << d.y << endl; // ????

cout << d.z << endl; // Ok

cout << "---------" << endl;

return 0;

} Only one field
in the union
contains a
right data!

Bit-field

• Lets programmers define how many bits will be used by a
field to store the data

• Using struct to define bit-fields

• For example:

struct bits

{

unsigned bit0: 1;

unsigned bit1: 1;

unsigned bit2: 1;

unsigned bit3: 1;

unsigned bit4: 1;

unsigned bit5: 1;

unsigned bit6: 1;

unsigned bit7: 1;

};

Definition of
a bit-field

Bit-field

• The use of a bit-field is related to a union
• For example:

union bit_data

{

unsigned char data;

bits byte;

};

• By using that union, byte and data utilize the
same memory. Therefore, bit information can be
accessed from byte and a byte data can be sent
through data

#include <iostream>

using namespace std;

struct bits

{

unsigned bit0: 1;

unsigned bit1: 1;

unsigned bit2: 1;

unsigned bit3: 1;

unsigned bit4: 1;

unsigned bit5: 1;

unsigned bit6: 1;

unsigned bit7: 1;

};

union bit_data

{

unsigned char data;

bits byte;

};

void display_bits(bit_data b);

int main()

{

bit_data number;

number.data = 65;

cout << (int) number.data

<< " -> ";

display_bits(number);

number.data = 97;

cout << (int) number.data << " -> ";

display_bits(number);

// Turn on bit 3

number.byte.bit3 = 1;

cout << "After bit 3 was turned on : ";

display_bits(number);

// Turn on bit 6

number.byte.bit6 = 0;

cout << "After bit 6 was turned off: ";

display_bits(number);

return 0;

}

void display_bits(bit_data b)

{

cout << b.byte.bit7;

cout << b.byte.bit6;

cout << b.byte.bit5;

cout << b.byte.bit4;

cout << b.byte.bit3;

cout << b.byte.bit2;

cout << b.byte.bit1;

cout << b.byte.bit0;

cout << endl;

}

Try Yourself!

bitfield.cpp

Try to
understand
each code.

Then, you will
get the benefit
of bit-field for

some
applications.

Enum Constants

• Named constants that are stored as a list of symbols

• For example:
enum Day { MONDAY, TUESDAY, WEDNESDAY,

THURSDAY, FRIDAY, SATURDAY,

SUNDAY };

Based on that definition, MONDAY = 0, TUESDAY = 1,
WEDNESDAY = 2 and so on

• Other example:
enum Month { JAN = 1, FEB, MAR, APR, MAY, JUN,

JUL, AUG, SEP, OCT, NOV, DEC };

Based on that definition, JAN = 1, FEB = 2, MAR = 3 and so on

Enum variables

• An enum variable is a variable declared by an
enum type

• The variables can only store a symbol defined
in an enum type

• For example:
enum Day working_day;

working_day = MONDAY; // OK

working_day = Day(0); // OK

working_day = 0; // Not OK

Processing Enum Variables
• To the next day:

work_day = Day((int) work_day + 1);

• Converting from enum type to string:

Numeric value

Increment by one

Get the next day

string dayName(enum Day d)

{

string tmpDay;

switch(d)

{

case MONDAY:

tmpDay = "Monday";

break;

case TUESDAY:

tmpDay = "Tuesday";

break;

...

case SUNDAY:

tmpDay = "Sunday";

break;

}

return tmpDay;

}

Try Yourself!

enum.cpp (part 1)
#include <iostream>

#include <string>

using namespace std;

enum Day { MONDAY, TUESDAY, WEDNESDAY,

THURSDAY, FRIDAY, SATURDAY,

SUNDAY };

string dayName(enum Day d); // Prototype

int main()

{

enum Day work_day;

cout << "Working days:"<< endl;

work_day = MONDAY;

while (work_day <= FRIDAY)

{

cout << "*** " << dayName(work_day) << endl;

// To the next day

work_day = Day((int) work_day + 1);

}

return 0;

}

Please
continue to
the next

page.

Try Yourself!

enum.cpp (part 2)

string dayName(enum Day d)

{

string tmpDay;

switch(d)

{

case MONDAY:

tmpDay = "Monday";

break;

case TUESDAY:

tmpDay = "Tuesday";

break;

case WEDNESDAY:

tmpDay = "Wednesday";

break;

case THURSDAY:

tmpDay = "Thursday";

break;

case FRIDAY:

tmpDay = "Friday";

break;

case SATURDAY:

tmpDay = "Saturday";

break;

case SUNDAY:

tmpDay = "Sunday";

break;

}

return tmpDay;

}

Self-Review Questions

Question 1

Given

var1 = 140; // 1000 1100

a) Write C++ statements to change bit 3 of var1 to 0.

b) Write C++ statements to change bit 5 of var1 to 1.

c) What is the value in decimal for var2: var2 = ~var1;

Self-Review Questions

Answers:

a) b = 247; // 1111 0111

var1 = var1 & b; // 1000 0100

b) c = 32; // 0010 0000

var1 = var1 | c; // 1010 1100

c) var2 = ~var1; // 0111 0011

 115

Self-Review Questions

Question 2

Determine the value for each of the members of enumeration
color, which has been declared as follows:

enum color = { RED = 1, GREEN, BLUE, YELLOW = 7,

BLACK, PURPLE, WHITE = 16, ORANGE};

Self-Review Questions

Answers:

RED = 1

GREEN = 2

BLUE = 3

YELLOW = 7

BLACK = 8

PURPLE = 9

WHITE = 16

ORANGE = 17

Self-Review Questions

Question 3

Based on the following statements, determine TRUE or FALSE.

union myUnion

{

int m;

char n;

float o;

};

myUnion x;

a) Size of union myUnion is 4 bytes.

b) If x.m = 123 is executed, cout << d.o will display 123.

Self-Review Questions

Answers:

a) TRUE, because it depend on the size of its largest
members (int or float)

b) FALSE, because only one field in union d contains right
data, which is m. The data is not valid for field n and o.

