

OPENCOURSEWARE

ENGINEERING DYNAMICS

KINEMATICS OF PARTICLES CONTINUOUS MOTION

RECTILINEAR KINEMATICS: CONTINUOUS MOTION

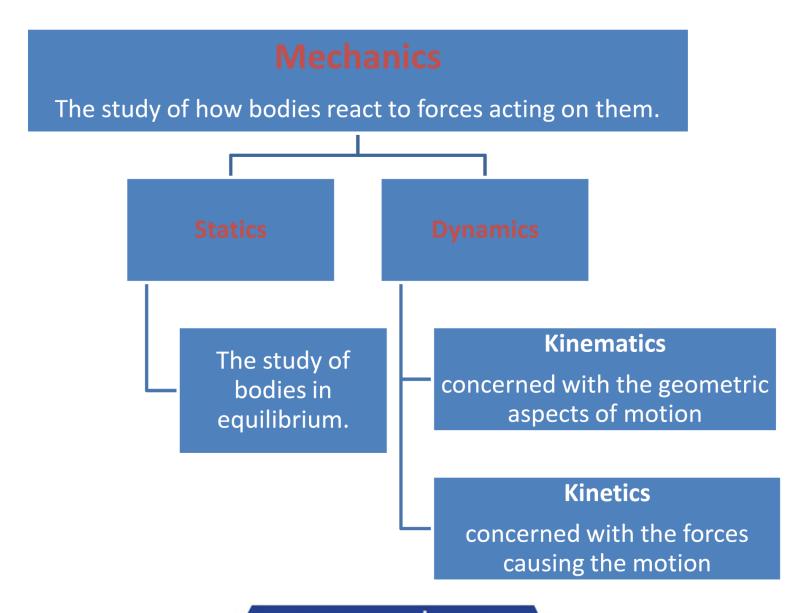
The Objectives:

At the end of the course students will be able to find the kinematic quantities (position, displacement, velocity, and acceleration) of a particle traveling along a straight path.

APPLICATIONS

In car racing, the team need to observe the motion of the racing car travels along a track. In order to simplify the analysis, can we assume the car together with the driver as a particle? What is quantities that can be use to analyze the motion of the at some instant?

An Overview of Mechanics



CONTINUOUS MOTION

A particle *P* travels along a straight-line path from origin *O* . The path can be defined by the coordinate axis *s*.

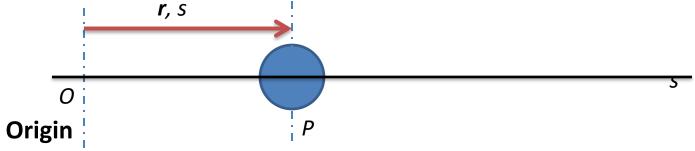


Figure 1: Position

At any instant, the position is always measured from the origin.

The position can be represented as vector \mathbf{r} , or the scalar \mathbf{s} with the units is meter (m) or feet (ft).

The Position

The vector quantities *r* must have the magnitude and the direction.

Scalar quantities s can be represented either positive or negative value.

CONTINUOUS MOTION

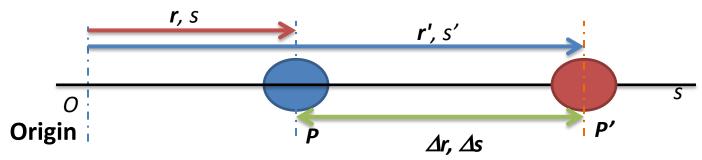


Figure 2: Displacement

The particle moving from position P with the distant r to position P with the distant r are measured from origin.

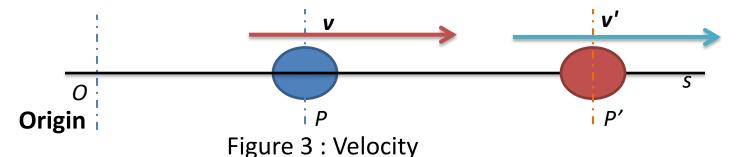
The displacement Δr , Δs

- The **displacement** of the particle when it moving from *P* to *P*` can be defined as its change in position.
- vector form, $\Delta r = r' r$; scalar form, $\Delta s = s' s$.

The total distance traveled s_T

• The total distance traveled by the particle, sT, is a positive scalar that represents the total length of the path over which the particle travels.

CONTINUOUS MOTION



The particle moving from position P with the velocity \mathbf{v} to position P` with the velocity \mathbf{v} `.

The definition

 Measure of the rate of change in the position of a particle. a vector quantity.

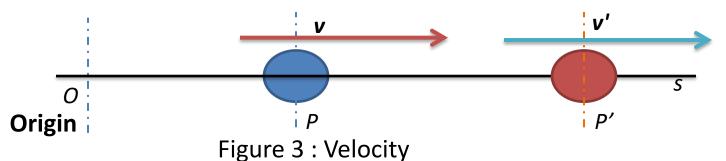
The unit

• m/s or ft/s.

The magnitude

speed

CONTINUOUS MOTION



The average velocity

•
$$\mathbf{v}_{ava} = \Delta \mathbf{r} / \Delta \mathbf{t}$$

The instantaneous velocity

•
$$\mathbf{v} = d\mathbf{r} / dt$$

Speed

•
$$v = ds / dt$$

Average speed

•
$$(v_{sp})_{avg} = s_T / \Delta t$$

CONTINUOUS MOTION

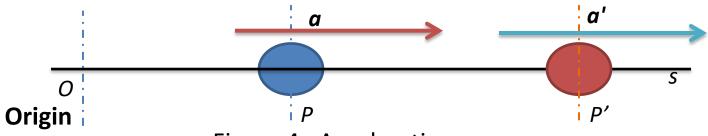


Figure 4: Acceleration

Acceleration

the rate of change in the velocity of a particle.

vector quantity

 m/s^2

ft/s²

CONTINUOUS MOTION

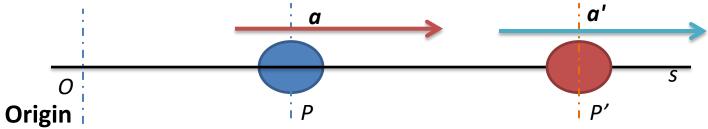


Figure 4: Acceleration

The instantaneous acceleration is the time derivative of velocity.

Vector form:

$$a = dv / dt$$

Scalar form:

$$a = dv / dt$$

= d^2s / dt^2

Positive acceleration = speed increasing.

Negative acceleration = Speed decreasing.

Eliminate dt

$$a ds = v dv$$

SUMMARY OF KINEMATIC RELATIONS

Note that s_o and v_o represent the initial position and velocity of the particle at t = 0.

Differentiate position to get velocity and acceleration.

$$v = ds/dt$$
; $a = dv/dt$ or $a = v dv/ds$

Integrate acceleration for velocity and position.

Velocity

Position

$$\int_{v_0}^{v} dv = \int_{0}^{t} a \ dt \ \text{or} \ \int_{v_0}^{v} v \ dv = \int_{s_0}^{s} a \ ds$$

$$\int_{s_0}^{s} ds = \int_{0}^{t} v \ dt$$

CONSTANT ACCELERATION

Special case

• Acceleration is constant $(a = a_c)$

$$\int_{v_0}^{v} dv = \int_{o}^{t} a_c dt \quad yields \quad v = v_o + a_c t$$

$$\int_{s_0}^{s} ds = \int_{o}^{t} v dt \quad yields \quad s = s_o + v_o t + (1/2) a_c t^2$$

$$\int_{s_0}^{v} v dv = \int_{o}^{s} a_c ds \quad yields \quad v^2 = (v_o)^2 + 2a_c (s - s_o)$$

A common example: Gravity

- A body freely falling toward earth.
- $a_c = g = 9.81 \text{ m/s}^2$

EXAMPLE 1

Problem

• A particle travels along a straight line to the right with a velocity of $v = (4 t - 3 t^2)$ m/s where t is in seconds. Also, s = 0 when t = 0. Determine The position and acceleration of the particle when t = 4 s.

Strategy

- Establish the positive coordinate, s, in the direction the particle is traveling.
- Calculate the acceleration by take a derivative of the velocity function which is a function of time.
- To calculate the position, integrate the velocity function.

EXAMPLE 1

Solution (1st Step)

• derivative of the velocity to determine the acceleration.

$$a = dv / dt = d(4 t - 3 t^2) / dt = 4 - 6 t$$

 $\Rightarrow a = -20 \text{ m/s}^2 \text{ (or in the } \leftarrow \text{ direction)} \text{ when } t = 4 \text{ s}$

Solution (2nd Step)

Calculate the distance traveled in 4s.

$$v = ds / dt \implies ds = v dt \implies$$

 $\Rightarrow s - s_0 = 2 t^2 - t^3$
 $\Rightarrow s - 0 = 2(4)^2 - (4)^3$
 $\Rightarrow s = -32 \text{ m (or } \leftarrow)$