BMCG 2423 STATICS : FORCE VECTOR

Dr. Mohd Juzaila Abd Latif¹, Dr. Rafidah Hasan²

${ }^{1}$ juzaila@utem.edu.my , ${ }^{2}$ rafidahhasan@utem.edu.my

Lesson Outcome

At the end of lecture, students will be able to:

- Resolve a 2-D vector into x and y axis system.
- Determine the resultant force and its direction of coplanar forces.

Scalar VS Vector

Problems in statics mechanics can be solved using either scalar or vector to represent the force.

Scalar

Examples: mass, volume
Characteristics: Has a magnitude (+ve or -ve)

Addition rule: Simple arithmetic Special Notation: None

Vector

force, velocity
Has a magnitude and direction

Parallelogram law
Bold font, a line, an arrow or a "carrot"

Vector Operations

Multiplication and Division (Scalar)

Multiplied by a +ve \& -ve scalar:

Division: 0.5F
**Note: The direction of the vector \boldsymbol{F} remain unchanged.

Vector Operations

Addition and Subtraction

In general all vectors follow the parallelogram law of vector addition and subtraction.

Addition: $\boldsymbol{R}=\boldsymbol{A}+\boldsymbol{B}$

Subtraction:

$$
R^{\prime}=A-B=A+(-B)
$$

Vector Operations

Addition and Subtraction

Addition and subtraction of several forces can be calculated using parallelogram law but could be difficult.

$$
R=(A+B)+C
$$

Vector Addition of Forces

Example: Resultant force

The screw eye below is subjected to two forces, F1 and F2. Determine the magnitude and direction of the resultant force.

Vector Addition of Forces

Example: Resultant force (continued)

Construct the vector triangle from the parallelogram law and solve resultant force using cosine law

$$
\begin{aligned}
\mathrm{FR} & =\sqrt{(110 N)^{2}+(160 N)^{2}-2(110 N)(160 N) \cos 125^{\circ}} \\
& =\sqrt{12100+25600-35200(-0.5736)}=240.6 N \\
& =241 \mathrm{~N}
\end{aligned}
$$

Vector Addition of Forces

Example: Resultant force (continued)

Apply sine law to determine angle, θ

$$
\begin{aligned}
& \frac{160 N}{\sin \theta}=\frac{240.6 N}{\sin 125^{\circ}} \\
& \sin \theta=\frac{160 N\left(\sin 125^{\circ}\right)}{240.6 N} \\
& \theta=33.0^{\circ}
\end{aligned}
$$

Addition of Coplanar Forces

Resolution of Vector in Cartesian Notation

Resolution is a process of breaking up a vector into x and y axis system.

- Break up vectors into x and y elements
- Each element has its magnitude and direction.
- Use the "unit vectors" i and j to represent the x and y axis.
- The x and y axes are always perpendicular to each other.
**Note: The process is like using the parallelogram law in reverse.
ocw.utem.edu.my

Addition of Coplanar Forces

Step 1: Break up each force into its x and y elements.

$$
\begin{aligned}
& \mathbf{F}_{1}=F_{1 x} \mathbf{i}+F_{1 y} \mathbf{j} ; \\
& \mathbf{F}_{2}=F_{2 x} \mathbf{i}-F_{2 y} \mathbf{j} ; \\
& F_{3}=-F_{3 x} \mathbf{i}+F_{3 y} \mathbf{j}
\end{aligned}
$$

Addition of Coplanar Forces

Step 2: Add all the x elements together and add all the y elements together.

$$
\begin{aligned}
\mathbf{F}_{R} & =\mathbf{F}_{1}+\mathbf{F}_{2}+\mathbf{F}_{3} \\
& =\left(F_{1 x}+F_{2 x}-F_{3 x}\right) \mathbf{i}+\left(F_{1 y}-F_{2 y}+F_{3 y}\right) \mathbf{j} \\
& =\left(F_{R x}\right) \mathbf{i}+\left(F_{R y}\right) \mathbf{j}
\end{aligned}
$$

Addition of Coplanar Forces

Step 3: Find the magnitude and angle of the resultant vector using the total of x and y elements.

$$
\begin{array}{r}
\mathrm{FR}=\sqrt{F R x^{2}+F R y^{2}} \\
\theta=\tan ^{-1}\left|\frac{F R y}{F R x}\right|
\end{array}
$$

Addition of Coplanar Forces

Example

A bracket is subjected to three simultaneous forces. Determine the magnitude and angle of the resultant force.

Addition of Coplanar Forces

Example (continued)

Step 1: Resolve the forces in their x - y elements.

$$
\begin{aligned}
\text { F1 } & =\left\{25 \sin 50^{\circ} \mathrm{i}+25 \cos 50^{\circ} \mathrm{j}\right\} \mathrm{kN} \\
& =\{19.15 \mathrm{i}+16.07 \mathrm{j}\} \mathrm{kN} \\
\mathrm{~F} 2 & =\left\{30 \cos 40^{\circ} \mathrm{i}-30 \sin 40^{\circ} \mathrm{j}\right\} \mathrm{kN} \\
& =\{22.98 \mathrm{i}-19.28 \mathrm{j}\} \mathrm{kN} \\
\mathrm{~F} 3 & =\{-(12 / 13) 36 \mathrm{i}+(5 / 13) 36 \mathrm{j}\} \mathrm{kN} \\
& =\{-33.23 \mathrm{i}+13.85 \mathrm{j}\} \mathrm{kN} \\
& \text { ocw.utem.edu.my }
\end{aligned}
$$

Addition of Coplanar Forces

Example (continued)

Step 2: Add the respective elements to get the resultant vector.

$$
\begin{aligned}
F_{R} & =\{(19.15+22.98-33.23) \mathbf{i}+(16.07-19.28+13.85) \mathbf{j}\} \mathrm{kN} \\
& =\{8.9 \mathbf{i}+10.64 \mathbf{j}\} \mathrm{kN}
\end{aligned}
$$

Step 3: Find magnitude and angle from the resultant elements.

$$
\begin{aligned}
\mathrm{FR} & =\sqrt{(8.9)^{2}+(10.64)^{2}}=13.87 \mathrm{kN} \\
\theta & =\tan ^{-1}\left|\frac{10.64}{8.9}\right|=50.1^{\circ}
\end{aligned}
$$

Addition of Coplanar Forces

Example

Figure below shows a bracket subjected to three forces of F_{1}, F_{2} and \boldsymbol{F}_{3}. If the magnitude of the resultant force acting on the bracket is 450 N directed along the positive \boldsymbol{u} axis, determine the magnitude of \boldsymbol{F}_{1} and its direction θ.

Addition of Coplanar Forces

Example (continued)

Step 1: Resolve the forces in their x - y elements.

$$
\begin{aligned}
F 1 & =\{F 1 \sin \theta i+F 1 \cos \theta j\} N \\
F 2 & =\{200 i\} N \\
F 3 & =\{(5 / 13) 260 i-(12 / 13) 260 j\} \mathrm{kN} \\
& =\{100 \mathrm{i}-240 \mathrm{j}\} \mathrm{kN} \\
& \text { ocw.utem.edu.my }
\end{aligned}
$$

Addition of Coplanar Forces

Example (continued)

Step 2: Add the respective elements to get the resultant vector.

$$
\begin{aligned}
F_{R} & =\{(F 1 \sin \theta+200+100) i+(F 1 \cos \theta-240) j\} N \\
& =\{(F 1 \sin \theta+300) i+(F 1 \cos \theta-240) j\} N
\end{aligned}
$$

Step 3: Find magnitude and angle of F1 where FR=450 N and $\theta R=30^{\circ}$.

$$
\begin{align*}
& F_{R x}=450 \cos 30^{\circ}=F 1 \sin \theta+300 \\
& \rightarrow \mathrm{~F} 1 \sin \theta=89.71 \tag{1}\\
& F_{\text {Ry }}=450 \sin 30^{\circ}=\mathrm{F} 1 \cos \theta-240 \\
& \rightarrow \text { F1 } \cos \theta=465 \tag{2}
\end{align*}
$$

Addition of Coplanar Forces

Example (continued)
Solve equation: (1) $\div(2)$

$$
\begin{gathered}
\tan \theta=\frac{89.71}{465} \\
\theta=10.9^{\circ}
\end{gathered}
$$

Substitute $\theta=10.9^{\circ}$ into equation (2).

$$
\begin{aligned}
\rightarrow \mathrm{F} 1 \cos 10.9^{\circ} & =465 \\
\mathrm{~F} 1 & =473.5 \mathrm{~N}
\end{aligned}
$$

End of Lesson

Recall:

- Can you differentiate between scalar and vector of force?
- What is parallelogram law?
- What is resolution of vector?
- How to draw the FBD?
- What are the coplanar forces?
- Can you do the addition of coplanar forces?

References

- Hibbeler, R.C. and Yap, K.B., 2013, Mechanics for Engineers - Statics, Thirteenth SI Edition, Pearson, Singapore.

