

OPENCOURSEWARE

INTRODUCTION TO MECHANICAL ENGINEERING BMCG 2423

STATICS: FORCE VECTOR

Dr. Mohd Juzaila Abd Latif¹, Dr. Rafidah Hasan²

¹juzaila@utem.edu.my, ²rafidahhasan@utem.edu.my

Lesson Outcome

At the end of lecture, students will be able to:

- Resolve a 2-D vector into x and y axis system.
- Determine the resultant force and its direction of coplanar forces.

Scalar VS Vector

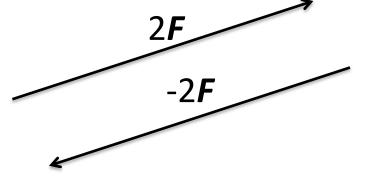
Problems in statics mechanics can be solved using either scalar or vector to represent the force.

	<u>Scalar</u>	<u>Vector</u>
Examples:	mass, volume	force, velocity
Characteristics:	Has a magnitude (+ve or -ve)	Has a magnitude and direction
Addition rule:	Simple arithmetic	Parallelogram law
Special Notation:	None	Bold font, a line, an arrow or a "carrot"

Vector Operations

Multiplication and Division (Scalar)

Multiplied by a +ve & -ve scalar:



Division: 0.5**F**

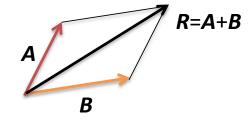
Note: The direction of the vector **F remain unchanged.

Vector Operations

Addition and Subtraction

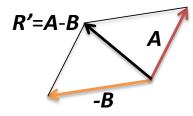
In general all vectors follow the **parallelogram law** of vector addition and subtraction.

Addition: R = A + B



Subtraction:

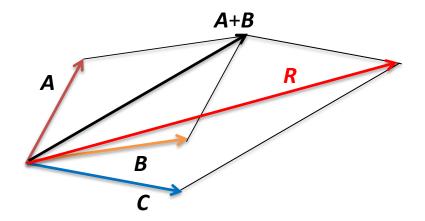
$$R' = A - B = A + (-B)$$



Vector Operations

Addition and Subtraction

Addition and subtraction of several forces can be calculated using **parallelogram law** but could be difficult.

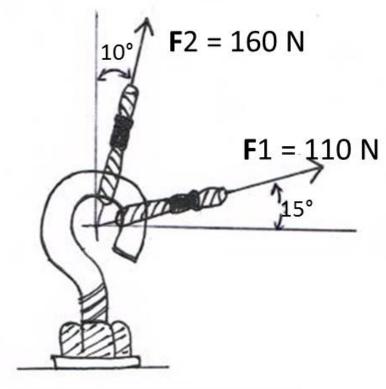


$$R = (A + B) + C$$

Vector Addition of Forces

Example: Resultant force

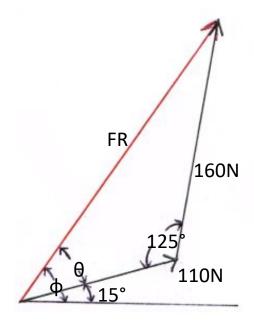
The screw eye below is subjected to two forces, **F**1 and **F**2. Determine the magnitude and direction of the resultant force.



Vector Addition of Forces

Example: Resultant force (continued)

Construct the vector triangle from the parallelogram law and solve resultant force using cosine law



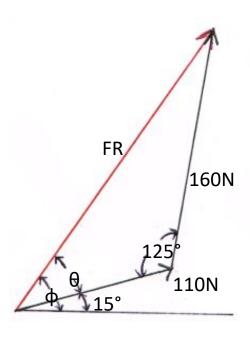
FR=
$$\sqrt{(110 N)^2 + (160 N)^2 - 2(110 N)(160 N)} \cos 125^\circ$$

= $\sqrt{12 100 + 25 600 - 35 200(-0.5736)} = 240.6 N$
= 241 N

Vector Addition of Forces

Example: Resultant force (continued)

Apply sine law to determine angle, θ



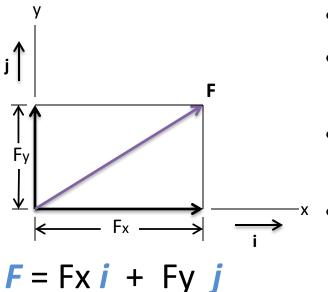
$$\frac{160 N}{\sin \theta} = \frac{240.6 N}{\sin 125^\circ}$$

$$\sin\theta = \frac{160 N(\sin 125^\circ)}{240.6 N}$$

$$\theta = 33.0^{\circ}$$

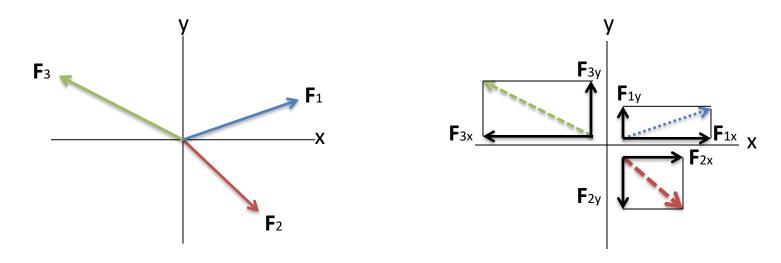
Resolution of Vector in Cartesian Notation

Resolution is a process of breaking up a vector into x and y axis system.



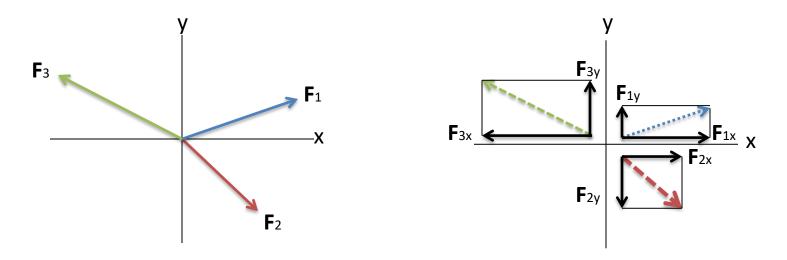
- Break up vectors into x and y elements
- Each element has its magnitude and direction.
- Use the "unit vectors" i and j to represent the x and y axis.
 - The x and y axes are always perpendicular to each other.

**Note: The process is like using the parallelogram law in reverse.



Step 1: Break up each force into its x and y elements.

$$\mathbf{F}_1 = F_{1x}\mathbf{i} + F_{1y}\mathbf{j}$$
;
 $\mathbf{F}_2 = F_{2x}\mathbf{i} - F_{2y}\mathbf{j}$;
 $\mathbf{F}_3 = -F_{3x}\mathbf{i} + F_{3y}\mathbf{j}$

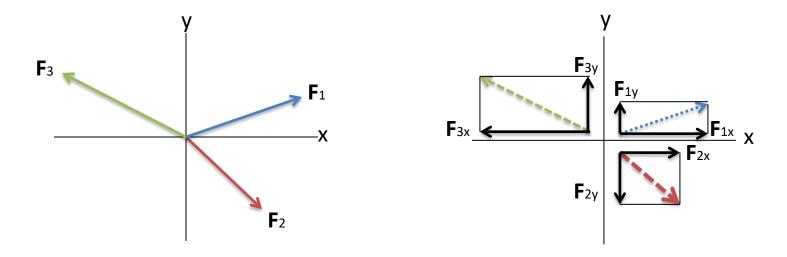


Step 2: Add all the x elements together and add all the y elements together.

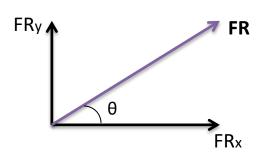
$$\mathbf{F}_{R} = \mathbf{F}_{1} + \mathbf{F}_{2} + \mathbf{F}_{3}$$

$$= (\mathbf{F}_{1x} + \mathbf{F}_{2x} - \mathbf{F}_{3x})\mathbf{i} + (\mathbf{F}_{1y} - \mathbf{F}_{2y} + \mathbf{F}_{3y})\mathbf{j}$$

$$= (\mathbf{F}_{Rx})\mathbf{i} + (\mathbf{F}_{Ry})\mathbf{j}$$



Step 3: Find the magnitude and angle of the resultant vector using the total of x and y elements.



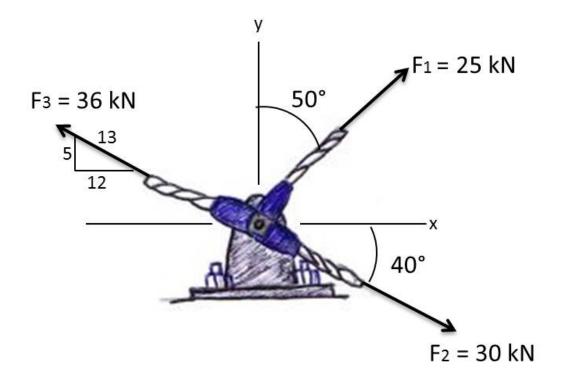
$$FR = \sqrt{FRx^2 + FRy^2}$$

$$\theta = \tan^{-1} \left| \frac{FRy}{FRx} \right|$$

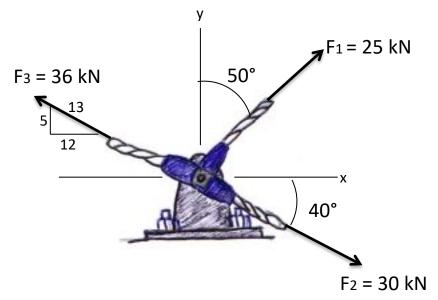
Example

A bracket is subjected to three simultaneous forces. Determine the magnitude and angle of the resultant

force.



Example (continued)



Step 1: Resolve the forces in their x-y elements.

Example (continued)

Step 2: Add the respective elements to get the resultant vector.

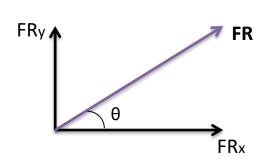
$$\mathbf{F}_{R} = \{ (19.15 + 22.98 - 33.23) \mathbf{i} + (16.07 - 19.28 + 13.85) \mathbf{j} \} \mathbf{k} N$$

= $\{ 8.9 \mathbf{i} + 10.64 \mathbf{j} \} \mathbf{k} N$

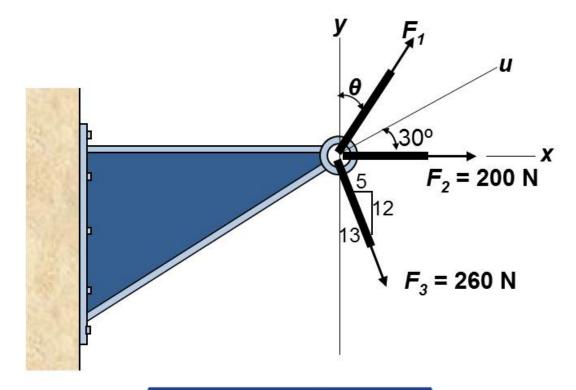
Step 3: Find magnitude and angle from the resultant elements.

FR=
$$\sqrt{(8.9)^2 + (10.64)^2} = 13.87 \text{ kN}$$

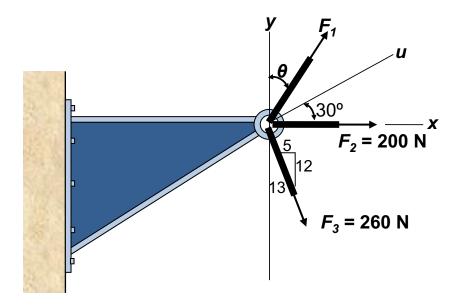
 $\theta = \tan^{-1} \left| \frac{10.64}{8.9} \right| = 50.1^\circ$



ExampleFigure below shows a bracket subjected to three forces of F_1 , F_2 and F_3 . If the magnitude of the resultant force acting on the bracket is 450 N directed along the positive u axis, determine the magnitude of F_1 and its direction θ .



Example (continued)



Step 1: Resolve the forces in their x-y elements.

F1 = { F1 sin
$$\theta$$
 i + F1 cos θ j } N
F2 = { 200 i } N
F3 = { (5/13)260 i - (12/13)260 j } kN
= { 100 i - 240 j } kN

Example (continued)

Step 2: Add the respective elements to get the resultant vector.

$$\mathbf{F}_R$$
 = { (F1 sin θ + 200 + 100) i + (F1 cos θ – 240) j } N
= { (F1 sin θ + 300) i + (F1 cos θ – 240) j } N

Step 3: Find magnitude and angle of F1 where FR=450 N and θ R=30°.

$$\mathbf{F}_{Rx}$$
 = 450 cos 30°= F1 sin θ + 300
→ F1 sin θ = 89.71(1)
 \mathbf{F}_{Ry} = 450 sin 30°= F1 cos θ -240
→ F1 cos θ = 465(2)

Example (continued)

Solve equation: $(1) \div (2)$

$$\tan \theta = \frac{89.71}{465}$$

$$\theta = 10.9^{\circ}$$

Substitute θ =10.9° into equation (2).

$$\rightarrow$$
 F1 cos 10.9° = 465
F1 = 473.5 N

End of Lesson

Recall:

- Can you differentiate between scalar and vector of force?
 - What is parallelogram law?
 - What is resolution of vector?
 - How to draw the FBD?
 - What are the coplanar forces?
- Can you do the addition of coplanar forces?

References

 Hibbeler, R.C. and Yap, K.B., 2013, Mechanics for Engineers – Statics, Thirteenth SI Edition, Pearson, Singapore.

