

OPENCOURSEWARE

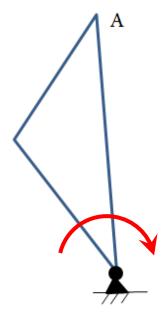
MECHANISM DESIGN CHAPTER 2: POSITION ANALYSIS

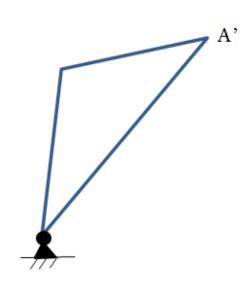
Shamsul Anuar Shamsudin Mohd Nizam Sudin

ocw.utem.edu.my

INTRODUCTION

- Position of particular points can be important at any time or input.
- As one point A changes to A', other points will change accordingly.





Scalar:

They just need magnitudes.

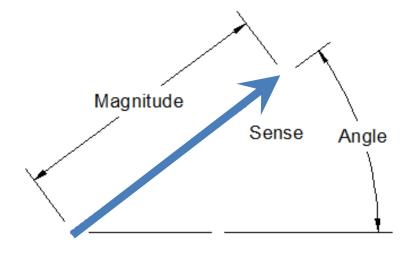
- Temperature
- Volume
- Time

Vector:

They consist of scalar magnitudes and direction angles.

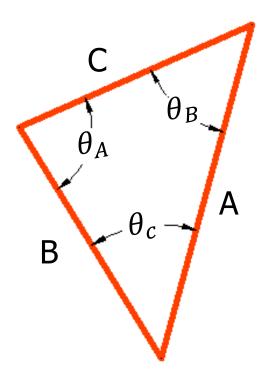
- Forces
- Displacement (Position)
- Velocity

- Scalar Magnitude
- Sense or arrowhead
- Direction Angle at the tail



Take: angle 0° from positive x. Positive θ going counterclockwise. Clockwise θ is negative.

Use triangles & trigonometry when working with two vectors.



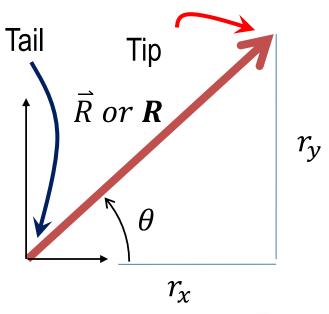
Cosine Law.

$$C^2 = A^2 + B^2 - 2AB\cos\theta_C$$

Sine Law.

$$\frac{A}{\sin \theta_A} = \frac{B}{\sin \theta_B} = \frac{C}{\sin \theta_C}$$

- These operations give the resultant of several vectors.
- Place the vectors tail-to-tip, maintaining directions.
- The resultant shows the final destination.



$$\vec{R} = \begin{Bmatrix} r_x \\ r_y \end{Bmatrix}$$

$$= |\vec{R}| \begin{Bmatrix} \cos \theta \\ \sin \theta \end{Bmatrix}$$

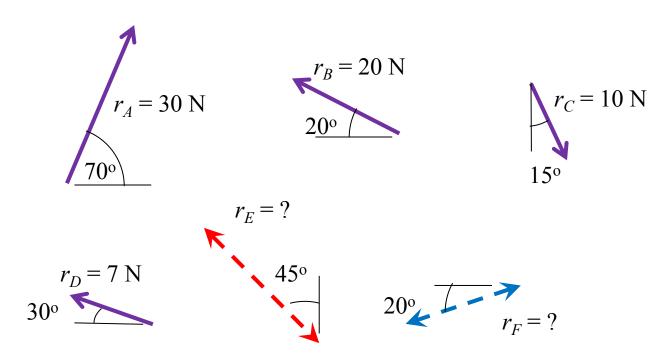
$$= r \begin{Bmatrix} \cos \theta \\ \sin \theta \end{Bmatrix}$$

VECTOR EQUATIONS

We can solve for either:

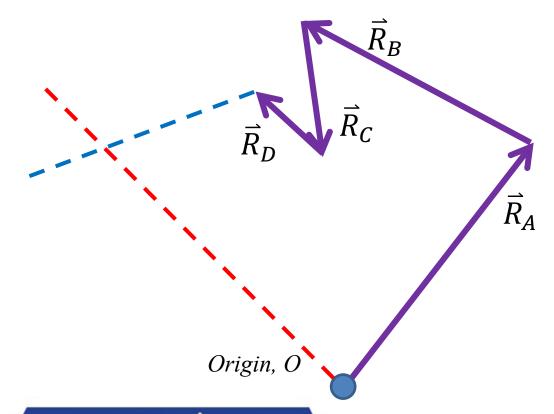
- The magnitude & direction of one vector
- The magnitude of two vectors.
- Two angles of the two vectors.

Only 2 unknowns to solve from 1 equation



VECTOR EQUATIONS

Based on known vectors, a vector polygon can be drawn to scale. Since the polygon is not closed yet, the two other vectors \vec{R}_E and \vec{R}_F are needed to return to the Origin, O.



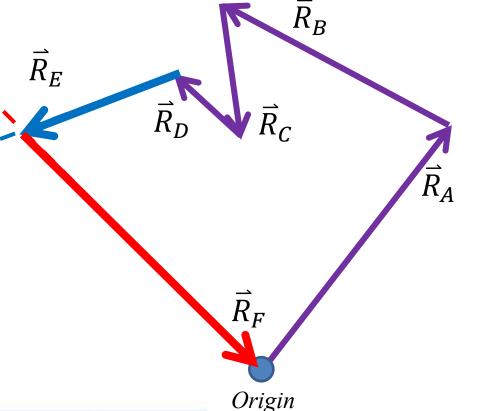
VECTOR EQUATIONS

If done graphically, it is best to use full scale. Then the magnitude and angles of unknown vectors can be measured. Alternatively, scale down the polygon carefully.

$$\begin{aligned} \vec{R}_A + \vec{R}_B + \vec{R}_C + \vec{R}_D \\ = -\vec{R}_E - \vec{R}_F \end{aligned}$$

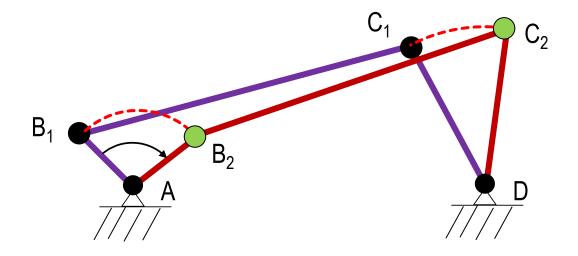
Analytically, this loop equation needs to be expanded where:

$$\vec{R}_i = r_i \begin{Bmatrix} \cos \theta_i \\ \sin \theta_i \end{Bmatrix}$$



GRAPHICAL METHOD

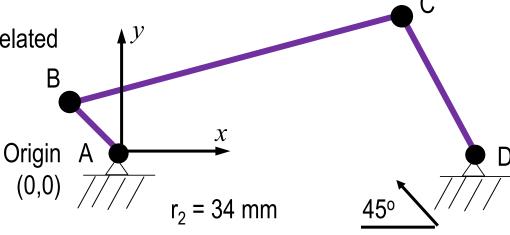
The aim is to find the position of all points and links, as the driver link 2 changes position.



Oftentimes, there is one point-of-interest (POI) that needs to be monitored.

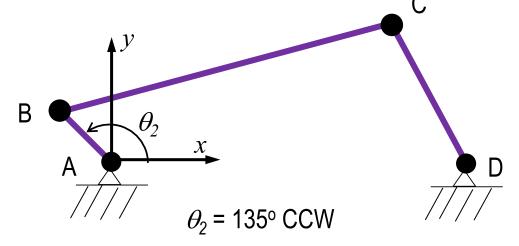
Location of a point

Usually the position must be related to the Origin.



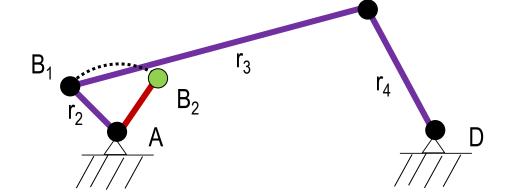
Angular position of a link

Angular direction of a link in a reference axis.

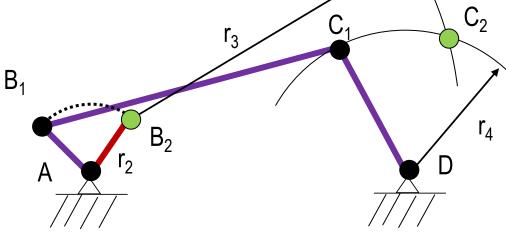


GRAPHICAL POSITION ANALYSIS

Identify the new position, B₂.

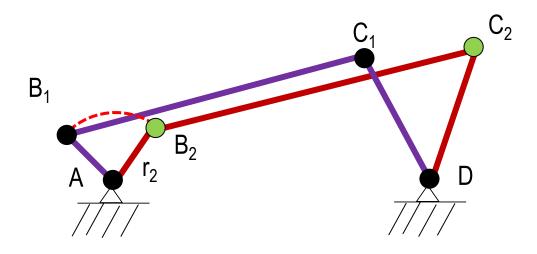


From B_2 make an arc with r_3 . Then, with D as center, make another arc with r_4 .



GRAPHICAL METHOD: COMPLETE THE DRAWING

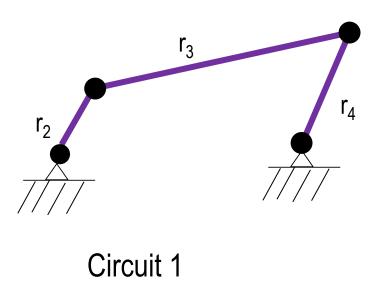
Lastly, complete the mechanism with links without altering the shape and size of any of them.

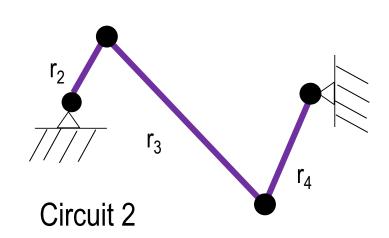


KINEMATIC CIRCUITS

This happens when the type of motion is crank-rocker or rockercrank. The mechanism cannot cross circuit unless force is high or the pin at C is taken out and reassembled in Circuit 2.

There are two possible circuits:



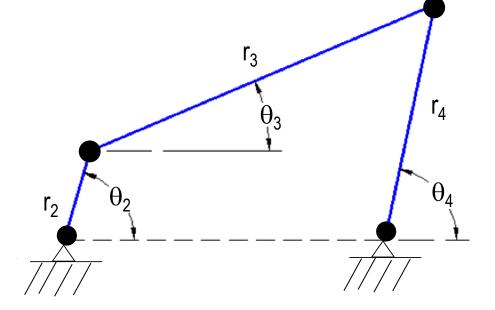


ANALYTICAL METHOD

CIRCUIT 1

$$BD = \sqrt{r_1^2 + r_2^2 - 2r_1r_2\cos\theta_2}$$

$$\gamma = \cos^{-1} \left[\frac{r_3^2 + r_4^2 - BD^2}{2r_3 r_4} \right]$$

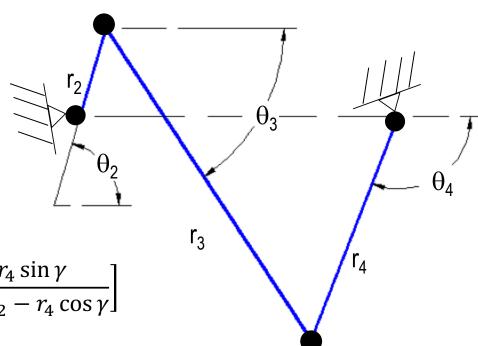


$$\theta_3 = 2 \tan^{-1} \left[\frac{-r_2 \sin \theta_2 + r_4 \sin \gamma}{r_1 + r_3 - r_2 \cos \theta_2 - r_4 \cos \gamma} \right]$$

$$\theta_4 = 2 \tan^{-1} \left[\frac{r_2 \sin \theta_2 - r_3 \sin \gamma}{r_4 - r_1 + r_2 \cos \theta_2 - r_3 \cos \gamma} \right]$$

ANALYTICAL METHOD

CIRCUIT 2



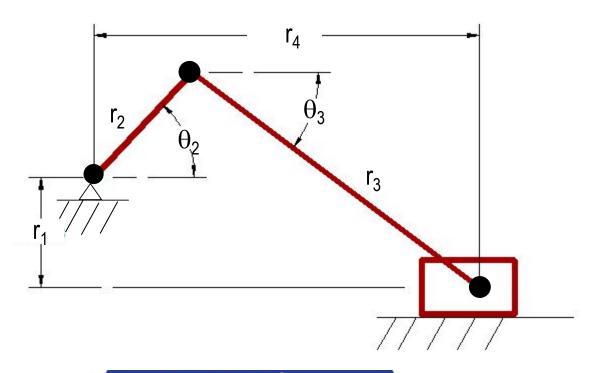
$$\theta_3 = 2 \tan^{-1} \left[\frac{-r_2 \sin \theta_2 - r_4 \sin \gamma}{r_1 + r_3 - r_2 \cos \theta_2 - r_4 \cos \gamma} \right]$$

$$\theta_4 = 2 \tan^{-1} \left[\frac{r_2 \sin \theta_2 + r_3 \sin \gamma}{r_4 - r_1 + r_2 \cos \theta_2 - r_3 \cos \gamma} \right]$$

This offset type. For inline type, consider $r_1 = 0$.

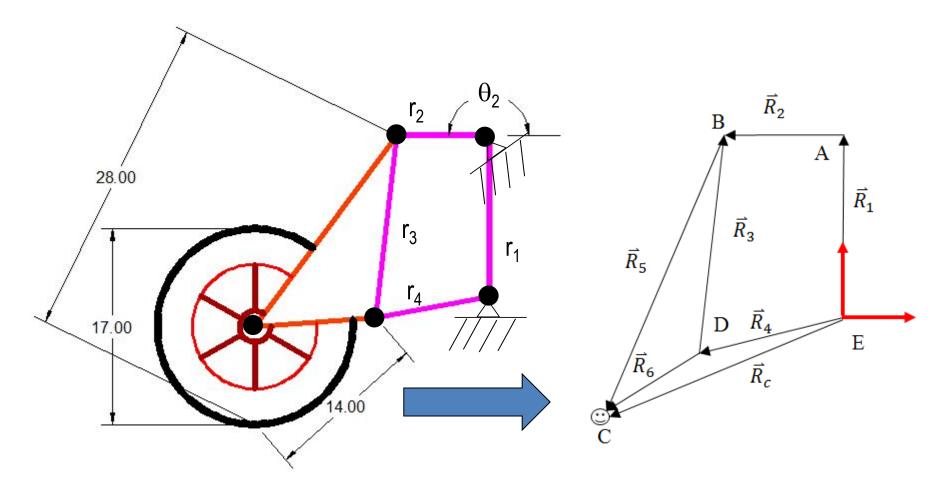
$$\theta_3 = \sin^{-1} \left[\frac{r_1 + r_2 \sin \theta_2}{r_3} \right]$$

$$r_4 = r_2 \cos \theta_2 + r_3 \cos \theta_3$$



VECTOR ANALYSIS - BRIEF

It is a more general type of solution. Identify vector loop equations.



EXAMPLE USING VECTOR APPROACH

Find the location of the bottom of the wheel when the upper control arm turns 15° CCW.

Solution

Fixed variables:

$$\alpha = 137.82^{\circ}$$
, $\theta_1 = 90^{\circ}$, r_1 , r_2 , r_3 , r_4 , r_5 , r_6

Varying variables:

$$\theta_2 = 195^{\circ}$$
, θ_3 , θ_4 , \vec{R}_5 , θ_6 , \vec{R}_c

Loops:

$$\vec{R}_4 + \vec{R}_3 = \vec{R}_1 + \vec{R}_2$$
 (θ_3, θ_4) - unknown $\vec{R}_5 = -\vec{R}_3 + \vec{R}_6$ $\vec{R}_c = \vec{R}_4 + \vec{R}_6$

Known:

$$\vec{R}_0 = {0 \brace 0}, \vec{R}_1 = {0 \brace 14}, \ \theta_2 = 195^\circ, \ \theta_1 = 90^\circ \ r_2 = 8, \ r_3 = 16, \ \text{and} \ r_4 = 10.$$

Expansion:

$$10 \begin{Bmatrix} \cos(\theta_4) \\ \sin(\theta_4) \end{Bmatrix} + 16 \begin{Bmatrix} \cos(\theta_3) \\ \sin(\theta_3) \end{Bmatrix} = \begin{Bmatrix} 0 \\ 14 \end{Bmatrix} + 8 \begin{Bmatrix} \cos(195^\circ) \\ \sin(195^\circ) \end{Bmatrix} = \begin{Bmatrix} -7.73 \\ 11.93 \end{Bmatrix}$$

$$\vec{R}_H = \vec{R}_1 + \vec{R}_2 = \begin{cases} -7.73 \\ 11.93 \end{cases}$$

$$\theta_H = \tan^{-1} \left(\frac{11.93}{-7.73} \right) + 180$$

$$= 123^{\circ}$$

$$r_H = \sqrt{7.73^2 + 11.93^2} = 14.22$$

$$r_3^2 = r_H^2 + r_4^2 - 2r_4r_H \cos \varphi$$

$$\varphi = \cos^{-1} \left(\frac{r_H^2 + r_4^2 - r_3^2}{2r_4r_H} \right)$$

$$= \cos^{-1} \left(\frac{14.22^2 + 10^2 - 16^2}{2(10)(14.22)} \right)$$

$$= 80.65^\circ$$

$$10 \begin{cases} c(203.65) \\ s(203.65) \end{cases} + 16 \begin{cases} c\theta_3 \\ s\theta_3 \end{cases} = \begin{cases} -7.73 \\ 11.93 \end{cases}$$
$$\begin{cases} c\theta_3 \\ s\theta_3 \end{cases} = \begin{cases} 0.0894 \\ 0.9963 \end{cases}$$

$$\theta_3 = 84.87^{\circ}$$

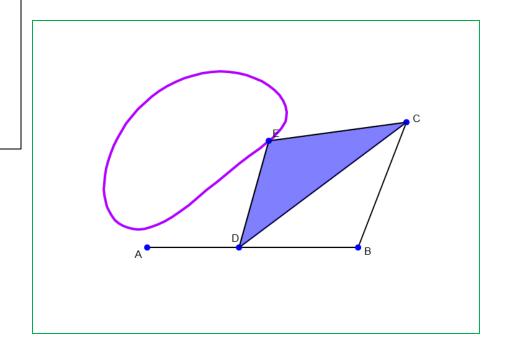
$$\theta_6 = 84.87^{\circ} + 137.82^{\circ} = 222.69^{\circ}$$

$$\vec{R}_c = 10 \begin{cases} c(203.65) \\ s(203.65) \end{cases} + 14 \begin{cases} c(222.69) \\ s(222.69) \end{cases}$$
$$= \begin{cases} -19.45 \\ -13.50 \end{cases}$$

THANK YOU

Main Reference:

Myszka, David H., 2012. Machines and mechanism: applied kinematic analysis, 4th ed., Prentice Hall, New York.



Source:

https://commons.wikimedia.org/wiki/File:4_bar_linkage_animated.gif

