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Lesson Outcomes

Upon completion of this lesson, students should be able to:

• Solve surface integrals using Divergence Theorem
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In this section we are going to relate surface 

integrals to triple integrals. 

The theorem is called Divergence Theorem

also known as

Gauss’ Theorem
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The history of Divergence Theorem

▪ 1760: Joseph-Louis Lagrange introduced the notion of surface integrals.

▪ 1762: Lagrange employed surface integrals in his work on fluid mechanics. He 

discovered the divergence theorem.

▪ 1813: Carl Friedrich Gauss used surface integrals while working on the gravitational 

attraction of an elliptical spheroid, when he proved special cases of the divergence 

theorem.
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From Stokes’ theorem to divergence theorem

• This is all about a surface in space.
• But unlike, Stokes' theorem, the divergence theorem only applies to closed

surfaces, meaning surfaces without a boundary.
• For example, a hemisphere is not a closed surface, it has a circle as its

boundary, hence divergence theorem cannot be applied.
• However, if we add on the disk on the bottom of this hemisphere, and

consider the disk and the hemisphere is now a single closed surface.
• In this case, given some vector field, the divergence theorem can be used

on this two-part surface.
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From Stokes’ theorem to divergence theorem

• It allows us to be able to deal with three-dimensional volume enclosed by
surfaces, where the theorem can be applied for.

• The similarity of divergence theorem to Stokes’ theorem that it relates the
integral of a derivative of a function over a region to the integral of the
original function 𝐹 over the boundary of the region.
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Usefulness of divergence theorem

• Both surface integrals and triple integrals can be very tedious to compute. 

• However the divergence theorem gives a tool for translating back and forth 
between them, and it can help turn a particularly difficult surface integral into an 
easier volume integral. 

• This is especially effective if the volume 𝑉 is some familiar shape (like  sphere, 
cone, paraboloid)  and if the divergence turns out to be a simple function.
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Usefulness of divergence theorem

• It is also a powerful theoretical tool, especially for physics. 

• For example: In electrodynamics, it can express various fundamental rules like 
Gauss's law either in terms of divergence, or in terms of a surface integral. 

• Sometimes a situation is easier to think about locally, e.g. what individual charges 
at individual points in space are generating an electric field. But other times you 
want a more global view, perhaps asking how an electric field passes through an 
entire surface.
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Divergence Theorem

• Think of the divergence of a vector field as the extent to which it behaves like a sink

or a source.

• To what extent is there more exiting a region then entering it

• Thus, the expansion of a fluid flowing with a velocity field of 𝐅 is captured by the

divergence of 𝐅.

• The divergence is a scalar which at a given point it is a single number that

represents how much of the flow is expanding at that point.
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Divergence Theorem – Definition

Suppose 𝐺 is bounded by a closed surface 𝑆 and ෝ𝒏 is a unit normal vector

outward from 𝐺. If 𝐅(𝑥, 𝑦, 𝑧) = 𝑓(𝑥, 𝑦, 𝑧)𝐢 + 𝑔(𝑥, 𝑦, 𝑧)𝐣 + ℎ(𝑥, 𝑦, 𝑧)𝐤 is a vector

field which 𝑓 𝑥, 𝑦, 𝑧 , 𝑔 𝑥, 𝑦, 𝑧 , ℎ 𝑥, 𝑦, 𝑧 have continuous partial derivatives in

𝐺, then

ඵ

𝑆

𝐅 ⋅ ෝ𝐧 𝑑𝑆 =ම

𝐺

𝛻 ⋅ 𝐅 𝑑𝑉

where 𝛻 ∙ 𝐅 (sometimes written as div 𝐅) =
𝜕𝑓

𝜕𝑥
+

𝜕𝑔

𝜕𝑦
+

𝜕ℎ

𝜕𝑧
.

10
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Note: The theorem gives a relationship between a triple integral over

a solid region 𝐺 and a surface integral over the surface 𝑆 of 𝐺. Surface

𝑆 is closed that it forms the complete boundary of the solid 𝐺.

11

𝐺

𝑆𝐧

𝐧

𝐧

𝐧
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Example 14.1:

Let 𝑆 be the hemisphere 𝑧 = 4 − 𝑥2 − 𝑦2 oriented by outward normal and let
𝐅 𝑥, 𝑦, 𝑧 = 2𝑦𝐣. Use Divergence Theorem to evaluate

ඵ

𝑆

𝐅 ⋅ ෝ𝐧 𝑑𝑆 .

Solution:

𝑅

𝑧

𝑦

𝑥

2

2

𝐺𝑆
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Solution:

Let 𝐺 be the spherical solid enclosed by 𝑆 and 

𝛻 ∙ 𝐅 =
𝜕

𝜕𝑥
𝐢 +

𝜕

𝜕𝑦
𝐣 +

𝜕

𝜕𝑧
𝐤 ∙ 2𝑦 𝐣

=
𝜕

𝜕𝑦
2𝑦 = 2.
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Solution:
Hence,

ඵ

𝑆

𝐅 ⋅ ෝ𝐧 𝑑𝑆 =ම

𝐺

𝛻 ⋅ 𝐅 𝑑𝑉 = 2ම

𝐺

𝑑𝑉

= 2න

0

2𝜋

න

0

𝜋
2

න

0

2

𝜌2 sin𝜙 𝑑𝜌𝑑𝜙𝑑𝜃

= 2න

0

2𝜋

න

0

𝜋
2
𝜌3

3
0

2

sin𝜙𝑑𝜙𝑑𝜃 =
16

3
න

0

2𝜋

[− cos 𝜙]0

𝜋
2 𝑑𝜃

=
16

3
න

0

2𝜋

𝑑𝜃 =
16

3
[𝜃]0

2𝜋=
32

3
𝜋
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Example 14.2:

Use the Divergence theorem to evaluate 𝑆׭
𝐅 ⋅ ෝ𝐧 𝑑𝑆, where റ𝐅 is the vector field റ𝐅 =

2𝑥𝐢 + 𝑦𝐣 + 𝑧𝐤 and 𝑆 is the portion of the paraboloid 𝑧 = 1 + 𝑥2 + 𝑦2 bounded by
planes 𝑧 = 1 and 𝑧 = 5 and 𝐧 is the outward unit.

Solution:

𝑧

𝑦

𝑥

𝑅

1

𝐧𝟏 𝐧𝟏

𝐧𝟐 𝐧𝟐
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Solution:
The divergence of 𝐅 is

𝛻 ∙ 𝐅 =
𝜕

𝜕𝑥
𝐢 +

𝜕

𝜕𝑦
𝐣 +

𝜕

𝜕𝑧
𝐤 ∙ 2𝑥𝐢 + 𝑦𝐣 + 𝑧𝐤

=
𝜕

𝜕𝑥
2𝑥 +

𝜕

𝜕𝑦
𝑦 +

𝜕

𝜕𝑧
𝑧

= 2 + 1 + 1 = 4.
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Solution:
Hence,

ඵ

𝑆

𝐅 ⋅ ෝ𝐧 𝑑𝑆 =ම

𝐺

𝛻 ⋅ 𝐅 𝑑𝑉 = 4ම

𝐺

𝑑𝑉

= 4න

0

2𝜋

න

0

2

න

1+𝑟2

5

𝑑𝑧𝑟𝑑𝑟𝑑𝜃 = 4න

0

2𝜋

න

0

2

𝑧 1+𝑟2
5 𝑟𝑑𝑟𝑑𝜃

= 4න
0

2𝜋

න
0

2

4𝑟 − 𝑟3 𝑑𝑟𝑑𝜃 =4න

0

2𝜋

[2𝑟2 −
𝑟4

4
]0
2 𝑑𝜃

= 4න

0

2𝜋

4𝑑𝜃 = 16[𝜃]0
2𝜋= 32𝜋
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Example 14.3:

Calculate the flux of റ𝐅 = 𝑥𝐢 − 𝑦𝐣 + 𝑧2𝐤 of the surface S which is a paraboloid of 
𝑧 = 1 − 𝑥2 + 𝑦2 ; 𝑥2 + 𝑦2 ≤ 1

Solution:

𝑅

𝑧

𝑦

𝑥

1

1

𝐺𝑆
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Solution:

Let 𝐺 be the spherical solid enclosed by 𝑆 and 

𝛻 ∙ 𝐅 =
𝜕

𝜕𝑥
𝐢 +

𝜕

𝜕𝑦
𝐣 +

𝜕

𝜕𝑧
𝐤 ∙ 𝑥𝐢 − 𝑦𝐣 + 𝑧2𝐤

=
𝜕

𝜕𝑥
𝑥 −

𝜕

𝜕𝑦
𝑦 +

𝜕

𝜕𝑧
𝑧2

= 1 − 1 + 2𝑧 = 2𝑧.
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Solution:

ඵ

𝑆

𝐅 ⋅ ෝ𝐧 𝑑𝑆 =ම

𝐺

𝛻 ⋅ 𝐅 𝑑𝑉 = 2ම

𝐺

𝑧𝑑𝑉

= 2න

0

2𝜋

න

0

1

න

0

1−𝑟2

𝑧𝑟𝑑𝑧𝑑𝑟𝑑𝜃 = 2න

0

2𝜋

න

0

1
𝑧2

2
0

1−𝑟2

𝑟 𝑑𝑟𝑑𝜃

= න
0

2𝜋

න
0

1

1 − 𝑟2 2 𝑟 𝑑𝑟𝑑𝜃 = න
0

2𝜋

න
0

1

𝑟 − 2𝑟3 + 𝑟5 𝑑𝑟𝑑𝜃

= න

0

2𝜋
𝑟2

2
−
𝑟4

2
+
𝑟6

6
0

1

𝑑𝜃 = න
0

2𝜋 1

2
−
1

2
+
1

6
𝑑𝜃

= න

0

2𝜋
1

6
𝑑𝜃 =

1

6
[𝜃]0

2𝜋=
1

3
𝜋
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Example 14.4:

Verify the divergence theorem for vector field റ𝐅 = 𝑥 − 𝑦 𝐢 + (𝑥 + 𝑧)𝐣 + (𝑧 − 𝑦)𝐤

and surface 𝑆 that consists of cone 𝑧 = 𝑥2 + 𝑦2, 0 ≤ 𝑧 ≤ 2, and the circular top of
the cone (see the following figure). Assume this surface is positively oriented.

Solution:

𝑅

𝑧

𝑦

𝑥

2

2

𝑆
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Solution:
Let G be the solid cone enclosed by S. To verify the theorem, we need to show that

ඵ

𝑆

𝐅 ⋅ ෝ𝐧 𝑑𝑆 =ම

𝐺

𝛻 ⋅ 𝐅 𝑑𝑉

by calculating each integral separately.

Let’s solve the triple integral

ම

𝐺

𝛻 ⋅ 𝐅 𝑑𝑉 .
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Solution:
To compute the triple integral, we determine 𝛻 ⋅ 𝐅;

𝛻 ⋅ 𝐅 =
𝜕

𝜕𝑥
𝐢 +

𝜕

𝜕𝑦
𝐣 +

𝜕

𝜕𝑧
𝐤 ∙ 𝑥 − 𝑦 𝐢 + 𝑥 + 𝑧 𝐣 + 𝑧 − 𝑦 𝐤

= 1 + 1 = 2

ම

𝐺

𝛻 ⋅ 𝐅 𝑑𝑉 = 2ම

𝐺

𝑑𝑉 = 2න
0

2𝜋

න
0

2

න
𝑟

2

𝑟 𝑑𝑧 𝑑𝑟 𝑑𝜃 = 2න
0

2𝜋

න
0

2

𝑟𝑧 ቚ
𝑟

2
𝑑𝑟 𝑑𝜃

= 2න
0

2𝜋

න
0

2

2𝑟 − 𝑟2 𝑑𝑟 𝑑𝜃 = 2න
0

2𝜋

𝑟2 −
𝑟3

3
ቚ
0

2
𝑑𝜃 = 2න

0

2𝜋

4 −
8

3
𝑑𝜃

= 2න
0

2𝜋 4

3
𝑑𝜃 =

8

3
𝜃 ቚ

0

2𝜋
=
16

3
𝜋
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Solution:

Now to compute the flux integral, first note that 𝑆 is piecewise smooth. Therefore, the
flux integral breaks into two pieces: one flux integral across the circular top of the cone
𝑆1 and one flux integral across the surface of the cone 𝑆2.

𝑅

𝑧

𝑦

𝑥

2

2

𝑆1

𝑆2

𝐧𝟏

𝐧𝟐

𝐧𝟏

𝐧𝟐
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Solution:
Let’s start by calculating the flux across the circular top of the cone.
𝑆1: 𝑧 = 2 (point upwards towards 𝑧-positive)

𝐧 = 𝜵𝜙 = 𝐤
റ𝐅 ∙ 𝜵𝜙 = 𝑥 − 𝑦 + 𝑥 + 𝑧 𝐣 + 𝑧 − 𝑦 𝐤 ∙ 𝐤 = 𝑧 − 𝑦

ඵ
𝑆1

റ𝐅 ∙ 𝑑𝑺 = ඵ
𝑆1

റ𝐅 ∙ 𝐧𝑑𝑆 =ඵ
𝑅1

റ𝐅 ∙ 𝜵𝜙 𝑑𝐴 =ඵ
𝑅1

𝑧 − 𝑦 𝑑𝐴

= 0׬
2𝜋
0׬
2
2 − 𝑟 sin 𝜃 𝑟𝑑𝑟𝑑𝜃 = 0׬

2𝜋
𝑟2 −

𝑟3

3
sin 𝜃 ȁ0

2𝑑𝜃 = 0׬
2𝜋
4 −

8

3
sin 𝜃 𝑑𝜃

= 4𝜃 −
8

3
cos 𝜃 ȁ0

2𝜋 = 8𝜋
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Solution:

𝑆2: 𝑧 = 𝑥2 + 𝑦2. The unit normal vector 𝐧𝟐 is oriented downwards. A
parameterization of this surface is

𝐟 𝑟, 𝜃 = 𝑟 cos 𝜃 𝐢 + 𝑟 sin 𝜃 𝐣 + 𝑟𝐤
The tangent vectors are

𝐟r 𝑟, 𝜃 = cos 𝜃 𝐢 + sin 𝜃 𝐣 + 𝐤
𝐟𝜃 𝑟, 𝜃 = −𝑟 sin 𝜃 𝐢 + 𝑟 cos 𝜃 𝐣

The cross product of the tangent vectors

− 𝐟r × 𝐟𝜃 = −
𝑖 𝑗 𝑘

cos 𝜃 sin 𝜃 1
−𝑟 sin 𝜃 𝑟 cos 𝜃 0

= 𝑟 cos 𝜃 𝐢 + 𝑟 sin 𝜃 𝐣 − 𝑟𝐤

Note that, we must take the negative signs on the 𝑥 and 𝑦 components to induce 
the negative (or inward) orientation of the cone.
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Solution:

𝐹 𝑓 𝑟, 𝜃 ∙ 𝐟r × 𝐟𝜃
= 𝑟 cos 𝜃 − 𝑟 sin 𝜃 𝐢 + 𝑟 cos 𝜃 + 𝑟 𝐣 + 𝑟 − 𝑟 sin 𝜃 𝐤 ∙ 𝑟 cos 𝜃 𝐢 + 𝑟 sin 𝜃 𝐣 − 𝑟𝐤

= 𝑟2 cos2 𝜃 + 2𝑟2 sin 𝜃 − 𝑟2

ඵ

𝑆

റ𝐅 ∙ 𝑑𝑺 = ඵ

𝑅

റ𝐅 𝐟 𝑟, 𝜃 ∙ 𝐟r × 𝐟𝜃 𝑑𝐴 = න
0

2𝜋

න
0

2

𝑟2 cos2 𝜃 + 2𝑟2 sin 𝜃 − 𝑟2 𝑑𝑟𝑑𝜃

= න
0

2𝜋 𝑟3

3
cos2 𝜃 +

2𝑟3

3
sin 𝜃 −

𝑟3

3
ቚ
0

2
𝑑𝜃 =

8

3
න
0

2𝜋 cos 2𝜃 + 1

2
+ 2 sin 𝜃 − 1𝑑𝜃

=
8

3

sin 2𝜃

4
+
𝜃

2
− 2 cos 𝜃 − 𝜃

0

2𝜋

=
8

3
−
1

2
𝜃

0

2𝜋

= −
8

3
𝜋

ඵ
𝑆

റ𝐅 ∙ 𝑑𝑺 = ඵ
𝑆1

റ𝐅 ∙ 𝐧𝑑𝑆 +ඵ
𝑆2

റ𝐅 ∙ 𝐧𝑑𝑆 =8𝜋 −
8

3
𝜋 =

16

3
𝜋
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Solution:

ඵ
𝑆

റ𝐅 ∙ 𝑑𝑺 =ඵ
𝑆1

റ𝐅 ∙ 𝐧𝑑𝑆 +ඵ
𝑆2

റ𝐅 ∙ 𝐧𝑑𝑆 =8𝜋 −
8

3
𝜋 =

16

3
𝜋

Therefore, it verifies the Divergence Theorem.

ඵ

𝑆

𝐅 ⋅ ෝ𝐧 𝑑𝑆 =ම

𝐺

𝛻 ⋅ 𝐅 𝑑𝑉
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Exercise 14.1:

Use the Divergence theorem to evaluate 𝑆׭
𝐅 ⋅ ෝ𝐧 𝑑𝑆, where റ𝐅 is the vector field

റ𝐅 = 4𝑥𝑧𝐢 + 𝑥𝑦𝑧2 𝐣 + 3𝑧𝐤 and 𝑆 is the entire surface of the solid G bounded by the

cone 𝑧 = 𝑥2 + 𝑦2 and the plane 𝑧 = 4 and 𝐧 is the outward unit.

[Ans:320𝜋]
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Exercise 14.2:

Use the Divergence theorem to evaluate 𝑆׭
𝐅 ⋅ ෝ𝐧 𝑑𝑆, where റ𝐅 is the vector field

റ𝐅 = 𝑥𝐢 + 𝑦 𝐣 + 𝑧𝐤 and 𝑆 is the entire surface of the finite cylinder𝑥2 + 𝑦2 = 4, 0 ≤
𝑧 ≤ 8 and 𝐧 is the outward unit.

[Ans:96𝜋]
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Exercise 14.3:

Verify the Divergence Theorem in the case that റ𝐅 is the vector field റ𝐅 = 2𝐢 + 2 𝐣 + 2𝐤
and 𝑆 is the cube that is cut from the first octant by the planes 𝑥 = 2, 𝑦 = 2 and
𝑧 = 2.
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THANK YOU
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