BEKG 2433
ENGINEERING MATHEMATICS 2

Week 10: VECTOR FIELDS \& LINE INTEGRAL

Nur Ilyana Anwar Apandi

ilyana@utem.edu.my

Lesson Outcomes

Upon completion of this lesson, students should be able to:

- define vector fields.
- evaluate the line integrals.
- evaluate work done by a vector field.

Introduction: Vector Fields

A vector field on two-dimensional (2D) space is a function \mathbf{F} that assigns to each point (x, y) a 2 D vector given by

$$
\begin{gathered}
\mathbf{F}(x, y)=M(x, y) \mathbf{i}+N(x, y) \mathbf{j} \\
\text { or in a simpler form } \\
\mathbf{F}(x, y)=\langle M(x, y), N(x, y)\rangle .
\end{gathered}
$$

Here, the function $\mathbf{F}(x, y)$ has vector components that depend on the coordinates x and $y . M(x, y)$ and $N(x, y)$ are an ordinary scalar functions or called scalar fields (depends on x and y) that determine the components of the vectors at each point.

Introduction: Vector Fields

A vector field on three-dimensional (3D) space is a function \mathbf{F} that assigns to each point (x, y, z) a 3D vector given by

$$
\begin{gathered}
\mathbf{F}(x, y, z)=M(x, y, z) \mathbf{i}+N(x, y, z) \mathbf{j}+P(x, y, z) \mathbf{k} \\
\text { or } \\
\mathbf{F}(x, y, z)=\langle M(x, y, z), N(x, y, z), P(x, y, z)\rangle .
\end{gathered}
$$

A possible practical interpretation of these vector fields such as

1) effects of a force being exerted through space;
2) direct representation of physical motion.

Vector Fields

First, we learn a general concept of a vector field and general ways to express the function.

Example 10.1:

Given the vector field $\mathbf{F}(x, y)=x \boldsymbol{i}+y \boldsymbol{j}$.
By choosing various points (x, y), evaluate the vector field at these points. Then sketch the vector field \mathbf{F}.

Solution:

(x, y)	$x \boldsymbol{i}+y \boldsymbol{j}$	(x, y)	$x \boldsymbol{i}+y \boldsymbol{j}$
$(0,1)$	\boldsymbol{j}	$(0,-1)$	$-\boldsymbol{j}$
$(1,2)$	$\boldsymbol{i}+2 \boldsymbol{j}$	$(-1,2)$	$-\boldsymbol{i}+2 \boldsymbol{j}$
$(1,0)$	\boldsymbol{i}	$(-1,0)$	$-\boldsymbol{i}$
$(2,1)$	$2 \boldsymbol{i}+\boldsymbol{j}$	$(2,-1)$	$2 \boldsymbol{i}-\boldsymbol{j}$

Vector Fields

Recall operation of vector function,
Given that two vector functions for a single variable, t :

$$
\mathbf{F}(t)=x_{1}(t) \boldsymbol{i}+y_{1}(t) \boldsymbol{j}+z_{1}(t) \boldsymbol{k} \text { and } \boldsymbol{G}(t)=x_{2}(t) \boldsymbol{i}+y_{2}(t) \boldsymbol{j}+z_{2}(t) \boldsymbol{k}
$$

Product of scalar, α and vector:

$$
\alpha \boldsymbol{F}(t)=\alpha x_{1}(t) \boldsymbol{i}+\alpha y_{1}(t) \boldsymbol{j}+\alpha z_{1}(t) \boldsymbol{k}
$$

Vector Sum:

$$
\mathbf{F}(t)+\mathbf{G}(t)=\left(x_{1}(t)+x_{2}(t)\right) \boldsymbol{i}+\left(y_{1}(t)+y_{2}(t)\right) \boldsymbol{j}+\left(z_{1}(t)+z_{2}(t)\right) \boldsymbol{k}
$$

Product of a scalar function, $f(t)$ and a Vector Function:

$$
f(t) \mathbf{F}(t)=f(t) x_{1}(t) \boldsymbol{i}+f(t) y_{1}(t) \boldsymbol{j}+f(t) z_{1}(t) \boldsymbol{k}
$$

Vector Fields Operations

Expand the operation of a vector with 'del' operator where notation for gradient, ∇ :

$$
\boldsymbol{\nabla}=\frac{\partial}{\partial x} \mathbf{i}+\frac{\partial}{\partial y} \mathbf{j}+\frac{\partial}{\partial z} \mathbf{k}
$$

Divergence of vector field $\mathbf{F}(x, y, z)$:

$$
\boldsymbol{\nabla} \cdot \mathbf{F}(x, y, z)=\frac{\partial}{\partial x}(M(x, y, z))+\frac{\partial}{\partial y}(N(x, y, z))+\frac{\partial}{\partial z}(P(x, y, z))
$$

A gradient vector with φ as a function of three variables, $\operatorname{grad} \varphi$ or denoted as:

$$
\boldsymbol{\nabla} \varphi=\frac{\partial \varphi}{\partial x} \boldsymbol{i}+\frac{\partial \varphi}{\partial y} \boldsymbol{j}+\frac{\partial \varphi}{\partial z} \boldsymbol{k} .
$$

A curl of vector field $\mathbf{F}(x, y, z)$:

$$
\boldsymbol{\nabla} \times \mathbf{F}(x, y, z)=\left|\begin{array}{ccc}
\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
M(x, y, z) & N(x, y, z) & P(x, y, z)
\end{array}\right|
$$

Gradient Fields and Potential Functions

The vector field, \mathbf{F}, is called the gradient field for the scalar function, φ, is given by $\mathbf{F}=\boldsymbol{\nabla} \varphi$. The scalar function, φ, which is called a potential function for \mathbf{F}.

Example 10.2:

Find the gradient field for the potential function $\varphi(x, y, z)=x^{2}+y^{2}+z^{2}$.

Solution:

$$
\operatorname{grad} \varphi=\boldsymbol{\nabla} \varphi=\frac{\partial \varphi}{\partial x} \boldsymbol{i}+\frac{\partial \varphi}{\partial y} \boldsymbol{j}+\frac{\partial \varphi}{\partial z} \boldsymbol{k}=2 x \boldsymbol{i}+2 y \boldsymbol{j}+2 z \boldsymbol{k}
$$

ला| OpenCourseWare | ocw.utem.edu.my

Gradient Fields and Potential Functions

Example 10.3:

Find the gradient field, $\operatorname{grad} \varphi$, for the potential function $\varphi(x, y, z)=x y z$.

Solution:

$$
\operatorname{grad} \varphi=\boldsymbol{\nabla} \varphi=\frac{\partial \varphi}{\partial x} \boldsymbol{i}+\frac{\partial \varphi}{\partial y} \boldsymbol{j}+\frac{\partial \varphi}{\partial z} \boldsymbol{k}=y z \boldsymbol{i}+x z \boldsymbol{j}+x y \boldsymbol{k}
$$

\square OT OpenCourseWare | ocw.utem.edu.my Universiti Teknikal Malaysia Melaka

Exercise 10.1:

Find the gradient field, $\operatorname{grad} \varphi$ for the following potential function.

1. $\varphi(x, y, z)=y z+x^{2}$
2. $\varphi(x, y, z)=e^{z} \sin (2 x+y)$
3. $\varphi(x, y, z)=\ln x y z$

$$
\text { [Ans: 1. } \left.2 x \boldsymbol{i}+z \boldsymbol{j}+y \boldsymbol{k} 2.2 e^{z} \cos (2 x+y) \boldsymbol{i}+e^{z} \cos (2 x+y) \boldsymbol{j}+e^{z} \sin (2 x+y) \boldsymbol{k} 3 \cdot \frac{1}{x} \boldsymbol{i}+\frac{1}{y} \boldsymbol{j}+\frac{1}{z} \boldsymbol{k}\right]
$$

Line Integrals

The line integral is a single integral over a curve in 3D space that can be interpreted as the area under a curve C.

An important application of line integrals is the computation of the work done as a variable force moves along an arbitrary path.

The idea of line integral involves

- Integrate over a curve (instead of integrating over an interval $[a, b]$)
- Involve scalar fields or vector fields
- Solve problems involving fluid flow, forces, electricity and magnetism

Line Integrals

Let C be a smooth curve in 2D spaces where both $f(x, y)$ and $g(x, y)$ is continuous on some open region containing the curve C.
Then define parametrically $x=x(t)$ and $y=y(t)$ for $a \leq t \leq b$. Hence, the line integral of $f(x, y)$ and $g(x, y)$ along C is denoted by

$$
\begin{aligned}
& \int_{C} f(x, y) d x=\int_{a}^{b} f(x(t), y(t)) x^{\prime}(t) d t \\
& \int_{C} g(x, y) d y=\int_{a}^{b} g(x(t), y(t)) y^{\prime}(t) d t
\end{aligned}
$$

คा OpenCourseWare | ocw.utem.edu.my
 Universiti Teknikal Malaysia Melaka

Line Integrals

Example 10.4:

Evaluate

$$
\int_{C} 3 x y d x+2\left(x^{2}+y^{2}\right) d y
$$

over the circular arc given by $x=\cos t$ and $y=\sin t$ for $0 \leq t \leq \frac{\pi}{2}$.
Solution:
From $x^{\prime}(t)=\frac{d x}{d t}=-\sin t$ and $y^{\prime}(t)=\frac{d y}{d t}=\cos t$.

ल1T OpenCourseWare | ocw.utem.edu.my
 Universiti Teknikal Malaysia Melaka

Solution continued:

Hence perform the line integrals

$$
\int_{C} 3 x y d x=\int_{0}^{\frac{\pi}{2}} 3 \cos t \sin t(-\sin t) d t=-\int_{0}^{\frac{\pi}{2}} 3 \cos t \sin ^{2} t d t
$$

and

$$
\int_{C} 2\left(x^{2}+y^{2}\right) d y=\int_{0}^{\frac{\pi}{2}} 2\left(\cos ^{2} t+\sin ^{2} t\right)(\cos t) d t
$$

Thus

$$
\int_{C} 3 x y d x+2\left(x^{2}+y^{2}\right) d y=\left[-\sin ^{3} t+2 \sin t\right]_{0}^{\frac{\pi}{2}}=1
$$

T|T OpenCourseWare | ocw.utem.edu.my
 Universiti Teknikal Malaysia Melaka

Line Integrals

Example 10.5:

Evaluate

$$
\int_{C} 3 x y d x+2\left(x^{2}+y^{2}\right) d y
$$

over the circular arc given by $x=t$ and $y=\sqrt{1-t^{2}}$ for $0 \leq t \leq 1$.

Solution:

From $x^{\prime}(t)=\frac{d x}{d t}=\frac{d}{d t}(t)=1$ and $y^{\prime}(t)=\frac{d}{d t}\left(\sqrt{1-t^{2}}\right)=-\frac{2 t}{2 \sqrt{1-t^{2}}}$.

T|| OpenCourseWare | ocw.utem.edu.my
 Universiti Teknikal Malaysia Melaka

Solution continued:

Hence perform the line integrals

$$
\int_{C} 3 x y d x=\int_{0}^{1} 3(t) \sqrt{1-t^{2}} d t=-\int_{0}^{1} 3 t\left(1-t^{2}\right)^{1 / 2} d t
$$

and

$$
\int_{C} 2\left(x^{2}+y^{2}\right) d y=\int_{0}^{1} 2\left(t^{2}+\left(1-t^{2}\right)\right)\left(-\frac{t}{\sqrt{1-t^{2}}}\right) d t=-\int_{0}^{1} 2 t\left(1-t^{2}\right)^{-1 / 2} d t
$$

Thus

$$
\int_{C} 3 x y d x+2\left(x^{2}+y^{2}\right) d y=\left[-2\left(1-t^{2}\right)^{\frac{3}{2}}+\left(1-t^{2}\right)^{\frac{1}{2}}\right]_{0}^{1}=-1
$$

Line Integrals for arc length

Let C be a smooth curve in 3D spaces and $f(x, y, z)$ be continuous on some open region containing the curve C.
Then define parametrically $x=x(t), y=y(t)$ and $z=z(t)$ or write in a vector form $\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle$ for $a \leq t \leq b$.
If s is the arc length of the curve measured from $t=a$ to $t=b$, then

$$
\frac{d s}{d t}=\left\|\mathbf{r}^{\prime}(t)\right\|=\sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}+\left(z^{\prime}(t)\right)^{2}}
$$

Thus, the line integral of $f(x, y, z)$ along C with respect to s is denoted by

$$
\int_{C} f(x, y, z) d s=\int_{a}^{b} f(x(t), y(t), z(t)) d s=\int_{a}^{b} f(x(t), y(t), z(t))\left\|\boldsymbol{r}^{\prime}(t)\right\| d t
$$

Line Integrals

Example 10.6:

Evaluate

$$
\int_{C} 3(x+y z) d s
$$

over the line from $P(1,1,2)$ and $Q(0,2,1)$.

Solution:

Compute $\overrightarrow{P Q}=\overrightarrow{O Q}-\overrightarrow{O P}=\langle 0,2,1\rangle-\langle 1,1,2\rangle=\langle-1,1,-1\rangle$
Use it and define some vector and its first derivative

$$
\begin{aligned}
& \mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle=\langle 1,1,2\rangle+t\langle-1,1,-1\rangle=\langle 1-t, 1+t, 2-t\rangle \text { for } 0 \leq t \leq 1 \text { and } \\
& \text { c) } \quad \mathbf{r}^{\prime}(t)=\left\langle\frac{d}{d t}(1-t), \frac{d}{d t}(1+t), \frac{d}{d t}(2-t)\right\rangle=\langle-1,1,-1\rangle
\end{aligned}
$$

กा| OpenCourseWare | ocw.utem.edu.my
 Universiti Teknikal Malaysia Melaka

Solution continued:

Thus

$$
\frac{d s}{d t}=\left\|\mathbf{r}^{\prime}(t)\right\|=\sqrt{(-1)^{2}+(1)^{2}+(-1)^{2}}=\sqrt{3}
$$

From $\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle=\langle 1-t, 1+t, 2-t\rangle$ where $0 \leq t \leq 1$
Hence perform the line integrals

$$
\int_{C} 3(x+y z) d s=\int_{0}^{1} 3((1-t)+(1+t)(2-t)) \sqrt{3} d t=3 \sqrt{3} \int_{0}^{1} t^{2}-2 t+3 d t
$$

Thus

$$
\int_{C} 3(x+y z) d s=3 \sqrt{3}\left[\frac{t^{3}}{3}-t^{2}+3 t\right]_{0}^{1}=7 \sqrt{3}
$$

ला OpenCourseWare | ocw.utem.edu.my

Line Integrals

Example 10.7:

Evaluate $\int_{C} 2 y d s$ where C is the quarter-circle $x^{2}+y^{2}=16$ from $(0,4)$ and $(4,0)$.

Solution:

Let $x(t)=4 \sin t$ and $y(t)=4 \cos t$.
$\mathbf{r}(t)=\langle 4 \sin t, 4 \cos t\rangle$ for $0 \leq t \leq \frac{\pi}{2}$. So $\mathbf{r}^{\prime}(t)=\langle 4 \cos t,-4 \sin t\rangle$

$$
\begin{gathered}
\left\|\mathbf{r}^{\prime}(t)\right\|=\sqrt{(4 \cos t)^{2}+(-4 \sin t)^{2}}=4 \\
\int_{C} 2 y d s=2 \int_{0}^{\frac{\pi}{2}} 4 \cos t\left\|\mathbf{r}^{\prime}(t)\right\| d t=32[\sin t]_{0}^{\frac{\pi}{2}}=32
\end{gathered}
$$

Exercise 10.2:

1) Evaluate $\int_{C} 6 x y+12 y d s$ on the following lines.
a)The line from $P(1,0,0)$ to $Q(0,1,1)$.
b)The line from $Q(0,1,1)$ to $P(1,0,0)$.
2) Evaluate

$$
\int_{C}(x+y z) d s
$$

over the line from $P(1,2,1)$ and $Q(2,1,0)$.
3) Evaluate $\int_{C} 3 y d s$ where C is the semi-circle $x^{2}+y^{2}=4$ from $(0,-2)$ and $(2,0)$.

Line Integrals in Vector form

Let C be a smooth curve in 3D spaces with $M(x, y, z), N(x, y, z)$ and $P(x, y, z)$ being continuous on some open region containing the curve C.
The line integrals along C can be written in vector field notation, given by

$$
\mathbf{F}(x, y, z)=M(x, y, z) \mathbf{i}+N(x, y, z) \mathbf{j}+P(x, y, z) \mathbf{k}
$$

Then define parametrically $x=x(t), y=y(t)$ and $z=z(t)$ for $a \leq t \leq b$, so that the curve C can be expressed in terms of position vector

$$
\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k}
$$

and the derivatives

$$
\mathbf{r}^{\prime}(t)=\frac{d \mathbf{r}(t)}{d t}=\frac{d}{d t}(x(t)) \mathbf{i}+\frac{d}{d t}(y(t)) \mathbf{j}+\frac{d}{d t}(z(t)) \mathbf{k} .
$$

Vector Line Integral

Let \mathbf{F} be continuous vector field on a region containing a smooth oriented curve C parameterized by arc length. Let \mathbf{T} be the unit tangent vector of each point of C consistent with the orientation. The line integral of \mathbf{F} over C is

$$
\int_{C} \mathbf{F} \cdot \mathbf{T} d s
$$

Since $\frac{d s}{d t}=\left\|\mathbf{r}^{\prime}(t)\right\|$ implies $\frac{d s}{\left\|\mathbf{r}^{\prime}(t)\right\|}=d t$.
Hence,

$$
\int_{C} \mathbf{F} \cdot \mathbf{T} d s=\int_{C} \mathbf{F} \cdot \frac{\mathbf{r}^{\prime}(t)}{\left\|\mathbf{r}^{\prime}(t)\right\|} d s=\int_{C} \mathbf{F} \cdot \mathbf{r}^{\prime}(t) d t
$$

Note that reversing the orientation of a curve reverses the sign of the line integral of a

Line Integrals in Vector form

A vector field $\boldsymbol{F}(x, y)$ is said to be conservative if there exists a differentiable function $\varphi(x, y)$ such that the gradient of $\varphi(x, y)$ is $\boldsymbol{F}(x, y)=\nabla \varphi(x, y)$.
The function $\varphi(x, y)$ is called the scalar potential function for $\boldsymbol{F}(x, y)$

Example 10.8:

Let $\boldsymbol{F}(x, y)=2 y \mathbf{i}+3 x \mathbf{j}$.
Evaluate the line integral over the following curves
a) Curve is the path for a line segment from $(0,0)$ to $(1,1)$.
b) Along the parabola from $(0,0)$ to $(1,1)$.
c) Along the cubic from $(0,0)$ to $(1,1)$.

Line Integrals in Vector form

Example 10.8:

Let $\boldsymbol{F}(x, y)=2 y \mathbf{i}+2 x \mathbf{j}$. Evaluate the line integral over the following curves
a) Curve is the path for a line segment from $(0,0)$ to $(1,1)$.

Solution:

Line segment $y=x$ implies that parametric form is $x=t$ and $y=t$ for $0 \leq t \leq 1$, gives a position vector

$$
\mathbf{r}(t)=t \mathbf{i}+t \mathbf{j}+0 \mathbf{k}
$$

$$
\text { From } \boldsymbol{F}(x, y)=2 y \mathbf{i}+3 x \mathbf{j} . \text { Implies } \boldsymbol{F}(x(t), y(t))=2 t \mathbf{i}+2 t \mathbf{j} .
$$

$$
\int_{C} \mathbf{F}(x, y) \cdot d \mathbf{r}=\int_{0}^{1} \mathbf{F}(x(t), y(t)) \cdot \mathbf{r}^{\prime}(t) d t=\int_{0}^{1}(2 t \mathbf{i}+2 t \mathbf{j}) \cdot(\mathbf{i}+\mathbf{j}) d t=\int_{0}^{1} 4 t d t=2
$$

Line Integrals in Vector form

Example 10.8:

Let $\boldsymbol{F}(x, y)=2 y \mathbf{i}+2 x \mathbf{j}$. Evaluate the line integral over the following curves b) Along the parabola from $(0,0)$ to $(1,1)$.

Solution:

Parabola $y=x^{2}$ implies that parametric form is $x=t$ and $y=t^{2}$ for $0 \leq t \leq 1$, gives a position vector $\mathbf{r}(t)=t \mathbf{i}+t^{2} \mathbf{j}$
From $\boldsymbol{F}(x, y)=2 y \mathbf{i}+2 x \mathbf{j}$. Implies $\boldsymbol{F}(x(t), y(t))=2 t^{2} \mathbf{i}+2 t \mathbf{j}$.

$$
\begin{gathered}
\int_{C} \mathbf{F}(x, y) \cdot d \mathbf{r}=\int_{0}^{1} \mathbf{F}(x(t), y(t)) \cdot \mathbf{r}^{\prime}(t) d t=\int_{0}^{1}\left(2 t^{2} \mathbf{i}+2 t \mathbf{j}\right) \cdot(\mathbf{i}+2 t \mathbf{j}) d t \\
=\int_{0}^{1} 6 t^{2} d t=2
\end{gathered}
$$

Line Integrals in Vector form

Example 10.8:

Let $\boldsymbol{F}(x, y)=2 y \mathbf{i}+2 x \mathbf{j}$. Evaluate the line integral over the following curves
c) Along the cubic from $(0,0)$ to $(1,1)$.

Solution:

Cubic $x=y^{3}$ implies that the parametric form is $y=t$ and $x=t^{3}$ for $0 \leq t \leq 1$, gives a position vector

$$
\mathbf{r}(t)=t^{3} \mathbf{i}+t \mathbf{j}
$$

From $\boldsymbol{F}(x, y)=2 y \mathbf{i}+2 x \mathbf{j}$. Implies $\boldsymbol{F}(x(t), y(t))=2 t \mathbf{i}+2 t^{3} \mathbf{j}$.

$$
\begin{aligned}
& \int_{C} \mathbf{F}(x, y) \cdot d \mathbf{r}=\int_{0}^{1} \mathbf{F}(x(t), y(t)) \cdot \mathbf{r}^{\prime}(t) d t=\int_{0}^{1}\left(2 t \mathbf{i}+2 t^{3} \mathbf{j}\right) \cdot\left(3 t^{2} \mathbf{i}+\mathbf{j}\right) d t=\int_{0}^{1} 8 t^{3} d t \\
&=1
\end{aligned}
$$

Vector Line Integrals

Example 10.9:

Let $\boldsymbol{F}(x, y)=(y-x) \mathbf{i}+x \mathbf{j}$. Evaluate the line integral of \boldsymbol{F} on the path C from $K(0,2)$ to $L(2,0)$ via two-line segments through $M(0,0)$.
Solution:
C consists of two line segments:
i) From K to $M, C_{1}: \mathbf{r}(t)=0 \mathbf{i}+(2-t) \mathbf{j}$, and $\mathbf{r}^{\prime}(t)=-\mathbf{j}$ for $0 \leq t \leq 2$, with $\boldsymbol{F}(x, y)=(y-x) \mathbf{i}+x \mathbf{j}$, can be written as

$$
\mathbf{F}(x(t), y(t))=(2-t) \mathbf{i}
$$

ii) From L to $M, C_{2}: \mathbf{r}(t)=t \mathbf{i}+0 \mathbf{j}$, and $\mathbf{r}^{\prime}(t)=\mathbf{i}$ for $0 \leq t \leq 2$, with $\boldsymbol{F}(x, y)=(y-x) \mathbf{i}+x \mathbf{j}$, can be written as

$$
\mathbf{F}(x(t), y(t))=-t \mathbf{i}+t \mathbf{j} .
$$

กा| OpenCourseWare | ocw.utem.edu.my
 Universiti Teknikal Malaysia Melaka

Solution Example 10.9 :

$$
\begin{gathered}
\int_{C} \mathbf{F} \cdot \mathbf{r}^{\prime}(t) d t=\int_{C_{1}} \mathbf{F} \cdot \mathbf{r}^{\prime}(t) d t+\int_{C_{2}} \mathbf{F} \cdot \mathbf{r}^{\prime}(t) d t \\
=\int_{0}^{2}\langle 2-t, 0\rangle \cdot\langle 0,-1\rangle d t+\int_{0}^{2}\langle-t, t\rangle \cdot\langle 1,0\rangle d t \\
=\int_{0}^{2} 0 d t+\int_{0}^{2}-t d t=\left[-\frac{t^{2}}{2}\right]_{0}^{2}=-2
\end{gathered}
$$

Vector Line Integral

Application: A common application of line integrals of vector fields is computing the work done in moving an object in a force field such as a gravitational or electric field.

Work Done in a Force Field

Let $\mathbf{F}(x, y, z)$ be a continuous force field in the 3D region. The work done, denoted by W, in moving an object along with C in the positive direction for $a \leq t \leq b$, is given by

$$
W=\int_{C} \mathbf{F}(x, y, z) \cdot d \mathbf{r}=\int_{a}^{b} \mathbf{F}(x(t), y(t), z(t)) \cdot \mathbf{r}^{\prime}(t) d t
$$

where

$$
d \mathbf{r}(t)=d x(t) \mathbf{i}+d y(t) \mathbf{j}+d z(t) \mathbf{k}
$$

Line Integrals in Vector form

Example 10.10:

Find the work done by a force $\boldsymbol{F}(x, y, z)=2 x z \mathbf{i}+y z \mathbf{j}+(y-2 x) \mathbf{k}$ where C is the curve $x=t^{2}-1, y=2 t, z=t$ for $0 \leq t \leq 1$.

Solution:

Let $\boldsymbol{F} \cdot \mathrm{d} \mathbf{r}=2 x z d x+y z d y+(y-2 x) d z$ and the derivatives of x, y, z with respect to t are given by $d x=2 t d t, d y=2 d t, d z=d t$.
Thus, the required work done is $W=\int_{C} \mathbf{F} \cdot d \mathbf{r}$
$=\int_{\boldsymbol{C}} 2 x z d x+y z d y+(y-2 x) d z=\int_{0}^{1}\left[2\left(t^{2}-1\right)(t)(2 t)+2 t^{2}(2)+\left(2 t-2\left(t^{2}-1\right)\right)\right] d t$

$$
=\int_{0}^{1} 4 t^{4}-2 t^{2}+2 t+2 d t=\left[4 \frac{t^{5}}{5}-2 \frac{t^{3}}{3}+t^{2}+2 t\right]_{0}^{1}=\frac{47}{15}
$$

Exercise 10.3:

1. Given the force field $\boldsymbol{F}(x, y)=2 \mathbf{i}+x \mathbf{j}$ and C is the portion of $y=x^{3}$ from $(0,0)$ to $(1,1)$. Find the work required to move an object on the given oriented curve.
2. Evaluate the line integral of $\boldsymbol{F}(x, y)=(y-x) \mathbf{i}+x \mathbf{j}$ on the path C from $P(0,1)$ to $Q(1,0)$ via two-line segments through origin.
3. Evaluate the line integral of $\boldsymbol{F}(x, y)=(y-x) \mathbf{i}+x \mathbf{j}$ on the path C from $P(0,1)$ to $Q(2,0)$ via two-line segments through origin.

$$
\text { [Ans: 1. } \frac{11}{4} 2 .-\frac{1}{2} 3 .-2 \text {] }
$$

Reference

1)Weir M. D., Hass J., Giordano F. R. (2017), Thomas's Calculus, $14^{\text {th }}$ Edition, PearsonAddison Wesley
2) Fehribach, J. D. (2020). Multivariable and Vector Calculus. In Multivariable and Vector Calculus. De Gruyter.
3) Stroud, K. A., \& Booth, D. J. (2020). Engineering mathematics. Bloomsbury Publishing.

THANK YOU

