

BEKG 2433 ENGINEERING MATHEMATICS 2

FUNCTIONS OF SEVERAL VARIABLES

Rahifa Ranom

rahifa@utem.edu.my

Lesson Outcomes

Upon completion of this lesson, students should be able to:

- know the concept of a function of more than one variable
- use coordinate system to analyze the graphs of such functions

- In Calculus, YOU have dealt with the calculus of functions of a single variable.
- However, in the real world, physical quantities often depend on two or more variables.
- Examples:
 - \circ The temperature T at a point on the surface of the earth at any given time depends on the longitude x and latitude y of the point, T(x,y).
 - The volume V of a circular cylinder depends on its radius r and its height h, $V = \pi r^2 h$.
 - \circ The potential difference between two points which include a resistance R, V=

Definition:

Suppose D is a set of order pairs of real numbers, (x, y) which is the domain of a function with 2 independent variables x and y denotes as z = f(x, y). The set of z —values that associates with the (x, y) in D is the range of the function.

Domain (D): The set of all pairs (x, y) for which the given expression is a well-defined real number.

OpenCourseWare | ocw.utem.edu.my Universiti Teknikal Malaysia Melaka

One way of visualizing such a function is by means of an arrow diagram, where the domain D is represented as a subset of the xy —plane.

Example 1.1:

For
$$f(x,y) = 2x^3 + \sqrt{y}$$
. Find $f(-1,9)$, $f(\frac{1}{2},0)$, domain and range of f .

Solution:

By substituting the values of x and y into f(x, y), we obtain

$$f(-1,9) = 2(-1)^3 + \sqrt{9} = -2 + 3 = 1$$

$$f\left(\frac{1}{2},0\right) = 2\left(\frac{1}{2}\right)^3 + \sqrt{0} = 2\left(\frac{1}{8}\right) = \frac{1}{4}$$

Domain: x can be any values but y is defined only for $y \ge 0$. Hence the domain of f(x,y) is the set $D_f = \{(x,y): x,y \in \Re, y \ge 0\}$.

Range: The values of $2x^3$ and \sqrt{y} are real numbers and nonnegative values, respectively. Hence the range of f(x,y) is the set $R_f = \{f(x,y) \in \Re\}$.

Example 1.2:

For $f(x,y) = (x-2) \ln y + e^x$. Find $f(0,e^2)$, domain and range of f.

Solution:

By substituting the values of x and y into f(x,y), we obtain

$$f(0, e^2) = (0 - 2) \ln e^2 + e^0 = -2(2) + 1 = -3$$

Domain: x can be any values but y is defined only for y > 0. Hence the domain of f(x,y) is the set $D_f = \{(x,y): x,y \in \Re, y > 0\}$.

Range: The values of $(x-2) \ln y + e^x$ are real numbers, respectively. Hence the range of f(x,y) is the set $R_f = \{f(x,y) \in \Re\}$.

Example 1.3:

For $f(x,y) = 2y^2 + \sin 2x$. Find $f(0,e^2)$, domain and range of f.

Solution:

Domain: x and y can be any values. Hence the domain of f(x, y) is the set

$$D_f = \{(x, y) : x, y \in \Re\}.$$

Range: The values of $2y^2$ are greater than 0 ($2y^2 \ge 0$) while the range of $\sin 2x$ is from -1 to 1 ($-1 \le \sin 2x \le 1$). Hence the addition of these two terms determine the range of f(x,y), $R_f = \{f(x,y): f(x,y) \in \Re, f(x,y) \ge -1\}$.

Exercise 1.1:

Find the values at the given point and determine the domain and range of the following functions;

1.
$$f(x,y) = 1 - \cos xy^2$$
, $(\pi, -1)$

2.
$$f(x,y) = \frac{1}{x^3 - y}$$
, (-2,1)

Graphing Functions of Two Variables

Definition:

Level curve is the set of points in the plane z = f(x, y) = k where k are constants. The set of level curves is called **contour curve**. The surface z = f(x, y) is the set of all points (x, y, f(x, y)).

The steps to graph two variables functions:

- 1. Draw the level curves in the domain (x, y) where f has a constant value where k values must associate with the range of the z.
- 2. Sketch the surface z = f(x, y) in space (set of level curves).

Graphing Functions of Two Variables

Contour curve (set of level curves)

Surface

Example 1.4:

Given a function $z = f(x, y) = 4 - x^2 - y^2$. Find the domain and range of the function. Show the level curves at k = 0, k = 1, k = 2, k = 3. Then, sketch the graph of z = f(x, y).

Solution:

The range of z is $z \le 4$, thus the values of k must be $k \le 4$.

From the definition, z = f(x, y) = k.

Hence $f(x, y) = 4 - x^2 - y^2 = k$ which gives $x^2 + y^2 = 4 - k$.

When k=0, we obtain $x^2+y^2=4$ (a circle with radius r=2) k=1, we obtain $x^2+y^2=3$ (a circle with radius $r=\sqrt{3}$) k=2, we obtain $x^2+y^2=2$ (a circle with radius $r=\sqrt{2}$) k=3, we obtain $x^2+y^2=1$ (a circle with radius r=1)

Note: Equation of a circle radius, r is $x^2 + y^2 = r^2$.

Solution:

When y=0, we obtain $z=4-x^2$ which is a parabola on the xz -plane. When x=0, we obtain $z=4-y^2$ which is a parabola on the yz -plane.

The contour curve $x^2 + y^2 = 4 - k$

The surface of $f(x, y) = 4 - x^2 - y^2$ is a paraboloid vertex at (0,0,4).

Example 1.5:

Given a function $z = f(x, y) = 1 + \sqrt{x^2 + y^2}$. Find the domain and range of the function. Show the level curves at k = 2, k = 3. Then, sketch the graph of z = f(x, y).

Solution:

From the definition, z = f(x, y) = k.

Hence
$$f(x,y) = 1 + \sqrt{x^2 + y^2} = k$$
 which gives $x^2 + y^2 = (k-1)^2$.

When
$$k=2$$
, we obtain $x^2+y^2=1$ (a circle with radius $r=1$) $k=3$, we obtain $x^2+y^2=2^2$ (a circle with radius $r=2$)

Solution:

When y=0, we obtain z=1+x which is a linear equation, z —intercept at 1. When x=0, we obtain z=1+y which is a linear equation, z —intercept at 1. Hence, the surface is a cone vertex at (0,0,1).

The contour curve $x^2 + y^2 = (k-1)^2$

The surface of
$$f(x,y) = 1 + \sqrt{x^2 + y^2}$$
 is a cone vertex at $(0,0,1)$

Exercise 1.2:

Sketch the contour curve and the surface for the function

$$f(x,y) = -1 + x^2 + y^2$$

for k = 0, 3.

[Ans: A paraboloid with vertex at (0,0,-1)]

Exercise 1.3:

Sketch the contour curve and the surface for the function

$$f(x,y) = 2 - x - 2y$$

for k = 0,1,2.

[Ans: A tetrahedron plane which x – intercept at (2,0,0), y – intercept at (0,1,0) and z – intercept at (0,0,2)]

Functions with Three Variables

Definition:

Suppose G is a set of order pairs of real numbers, (x, y, z), a domain of a function with 3 independent variables x, y and z denotes as w = f(x, y, z). The set of w —values that associates with the numbers in G is the range of the function.

Domain (G): The set of all pairs (x, y, z) for which the given expression is a well-defined real number.

Example 1.6:

For
$$f(x, y, z) = \frac{xz}{y-1}$$
. Find $f(1,2,-2)$, domain and range of f .

Solution:

Domain: x, y and z can be any values except $y \neq 1$ ($y - 1 \neq 0$). Hence the domain of f(x, y, z) is the set

$$D_f = \{(x, y, z) : x, y, z \in \Re, y \neq 1\}.$$

Range: The function f(x, y, z) can be any values $R_f = \{f(x, y, z): f(x, y, z) \in \Re\}$.

Example 1.7:

For
$$f(x, y, z) = y^2 - 2\sin xz$$
. Find $f\left(\pi, 3, \frac{1}{2}\right)$, domain and range of f .

Solution:

Domain: x, y and z can be any values. Hence the domain of f(x, y, z) is the set $D_f = \{(x, y, z) : x, y, z \in \Re\}$.

Range: The term y^2 has the range of $y \ge 0$, meanwhile the term $-2 \sin xz$ has the range $-2 \le -2 \sin xz \le 2$. Thus, the range of the function f(x, y, z) is $R_f = \{f(x, y, z): f(x, y, z) \ge -2\}$.

Exercise 1.4:

Find the values at the given point and determine the domain and range of the following functions;

1.
$$f(x, y, z) = xy - \ln z$$
, $(3, -1, e^2)$

2.
$$f(x, y, z) = \frac{z}{x-y}$$
, (2,0,-3)

Graphing Functions of Three Variables

Definition:

The set of points in the space w = f(x, y, z) = k where k are constants is called level surface.

If we set values of k are k_1 , k_2 , and k_3 , thus we will get 3 level surfaces presented by S_1 , S_2 , and S_3 . Each surface is the same shape of each other.

Example 1.8:

Describe the level surfaces of $w = x^2 + y^2 + z^2$ for k = 1, 4, 9.

Solution:

The level surfaces are the graphs of

$$x^2 + y^2 + z^2 = k.$$

When k = 1, we obtain $x^2 + y^2 + z^2 = 1$. (A sphere with radius 1)

When k = 2, we obtain $x^2 + y^2 + z^2 = 4$. (A sphere with radius 2)

When k = 9, we obtain $x^2 + y^2 + z^2 = 9$. (A sphere with radius 3)

Solution:

When k=1, we obtain $x^2+y^2+z^2=1$. (A sphere with radius 1) When k=2, we obtain $x^2+y^2+z^2=4$. (A sphere with radius 2) When k=9, we obtain $x^2+y^2+z^2=9$. (A sphere with radius 3)

The surfaces of $f(x, y, z) = x^2 + y^2 + z^2$

Example 1.9:

Describe the level surfaces of $w=z-\sqrt{x^2+y^2}$ for k=-1,0,1.

Solution:

The level surfaces are the graphs of $z-\sqrt{x^2+y^2}=k$, or $z=k+\sqrt{x^2+y^2}$

When
$$k=-1$$
, we obtain $z=-1+\sqrt{x^2+y^2}$; (a cone with vertex $(0,0,-1)$) When $k=0$, we obtain $z=\sqrt{x^2+y^2}$; (a cone with vertex $(0,0,0)$) When $k=1$, we obtain $z=1+\sqrt{x^2+y^2}$; (a cone with vertex $(0,0,1)$).

Solution:

When
$$k=-1$$
, we obtain $z=-1+\sqrt{x^2+y^2}$; (a cone with vertex $(0,0,-1)$) When $k=0$, we obtain $z=\sqrt{x^2+y^2}$; (a cone with vertex $(0,0,0)$) When $k=1$, we obtain $z=1+\sqrt{x^2+y^2}$; (a cone with vertex $(0,0,1)$).

Exercise 1.5:

Sketch the level surfaces for the function $w = 2 + z - x^2 - y^2$ for k = 3, 6.

[Ans: 2 paraboloids vertex at (0,0,1) and (0,0,4)]

Exercise 1.6:

Sketch the level surfaces for the function $w = y^2 + z^2$ for k = 1, 4.

[Ans: A cylinder of radius 1 along x-axis when k=1 A cylinder of radius 2 along x-axis when k=4]

Reference

- 1) R. Ranom, I.W. Jamaludin, N. A. Razak, N.I.A Apandi, Engineering Mathematics, UTeM Press, 2021.
- 2) Abd Wahid Md. Raji, Ismail Kamis, Mohd Nor Mohamad & Ong Chee Tiong, Advanced Calculus for Science and Engineering Students, UTM Press, 2021.

THANK YOU

