BEKG 2433
ENGINEERING MATHEMATICS 2

FUNCTIONS OF SEVERAL VARIABLES

Rahifa Ranom

rahifa@utem.edu.my

Lesson Outcomes

Upon completion of this lesson, students should be able to:

- know the concept of a function of more than one variable
- use coordinate system to analyze the graphs of such functions
- In Calculus, YOU have dealt with the calculus of functions of a single variable.
- However, in the real world, physical quantities often depend on two or more variables.
- Examples:
- The temperature T at a point on the surface of the earth at any given time depends on the longitude x and latitude y of the point, $T(x, y)$.
- The volume V of a circular cylinder depends on its radius r and its height $h, V=$ $\pi r^{2} h$.
- The potential difference between two points which include a resistance $R, V=$ $I R$.

Functions with Two Variables

Definition:

Suppose D is a set of order pairs of real numbers, (x, y) which is the domain of a function with 2 independent variables x and y denotes as $z=f(x, y)$. The set of z-values that associates with the (x, y) in D is the range of the function.

Domain (D) : The set of all pairs (x, y) for which the given expression is a well-defined real number.

ला| OpenCourseWare | ocw.utem.edu.my
 Universiti Teknikal Malaysia Melaka

One way of visualizing such a function is by means of an arrow diagram, where the domain D is represented as a subset of the $x y$-plane.

ला OpenCourseWare | ocw.utem.edu.my
 Universiti Teknikal Malaysia Melaka

Functions with Two Variables

Example 1.1:

For $f(x, y)=2 x^{3}+\sqrt{y}$. Find $f(-1,9), f\left(\frac{1}{2}, 0\right)$, domain and range of f.

Solution:

By substituting the values of x and y into $f(x, y)$, we obtain

$$
\begin{gathered}
f(-1,9)=2(-1)^{3}+\sqrt{9}=-2+3=1 \\
f\left(\frac{1}{2}, 0\right)=2\left(\frac{1}{2}\right)^{3}+\sqrt{0}=2\left(\frac{1}{8}\right)=\frac{1}{4}
\end{gathered}
$$

Domain: x can be any values but y is defined only for $y \geq 0$. Hence the domain of $f(x, y)$ is the set $D_{f}=\{(x, y): x, y \in \Re, y \geq 0\}$.
Range: The values of $2 x^{3}$ and \sqrt{y} are real numbers and nonnegative values, respectively. Hence the range of $f(x, y)$ is the set $R_{f}=\{f(x, y) \in \Re\}$.

[1] OpenCourseWare | ocw.utem.edu.my
 Universiti Teknikal Malaysia Melaka

Functions with Two Variables

Example 1.2:

For $f(x, y)=(x-2) \ln y+e^{x}$. Find $f\left(0, e^{2}\right)$, domain and range of f.

Solution:

By substituting the values of x and y into $f(x, y)$, we obtain

$$
f\left(0, e^{2}\right)=(0-2) \ln e^{2}+e^{0}=-2(2)+1=-3
$$

Domain: x can be any values but y is defined only for $y>0$. Hence the domain of $f(x, y)$ is the set $D_{f}=\{(x, y): x, y \in \mathfrak{R}, y>0\}$.
Range: The values of $(x-2) \ln y+e^{x}$ are real numbers, respectively. Hence the range of $f(x, y)$ is the set $R_{f}=\{f(x, y) \in \mathfrak{R}\}$.

Functions with Two Variables

Example 1.3:

For $f(x, y)=2 y^{2}+\sin 2 x$. Find $f\left(0, e^{2}\right)$, domain and range of f.

Solution:

Domain: x and y can be any values. Hence the domain of $f(x, y)$ is the set

$$
D_{f}=\{(x, y): x, y \in \mathfrak{R}\} .
$$

Range: The values of $2 y^{2}$ are greater than $0\left(2 y^{2} \geq 0\right)$ while the range of $\sin 2 x$ is from -1 to $1(-1 \leq \sin 2 x \leq 1)$. Hence the addition of these two terms determine the range of $f(x, y), R_{f}=\{f(x, y): f(x, y) \in \Re, f(x, y) \geq-1\}$.

ला| OpenCourseWare | ocw.utem.edu.my Universiti Teknikal Malaysia Melaka

Exercise 1.1:

Find the values at the given point and determine the domain and range of the following functions;

1. $f(x, y)=1-\cos x y^{2},(\pi,-1)$
2. $f(x, y)=\frac{1}{x^{3}-y},(-2,1)$

$$
\text { 2. } \left.D_{f}=\left\{(x, y): x, y \in \Re, y \neq x^{3}\right\}, R_{f}=\{f(x, y): f(x, y) \in \mathfrak{R}, \neq 0\},-1 / 9\right]
$$

Graphing Functions of Two Variables

Definition:
Level curve is the set of points in the plane $z=f(x, y)=k$ where k are constants. The set of level curves is called contour curve. The surface $z=f(x, y)$ is the set of all points $(x, y, f(x, y))$.

The steps to graph two variables functions:

1. Draw the level curves in the domain (x, y) where f has a constant value where k values must associate with the range of the z.
2. Sketch the surface $z=f(x, y)$ in space (set of level curves).

ला| OpenCourseWare | ocw.utem.edu.my Universiti Teknikal Malaysia Melaka

Graphing Functions of Two Variables

Contour curve (set of level curves)

Surface

Example 1.4:

Given a function $z=f(x, y)=4-x^{2}-y^{2}$. Find the domain and range of the function. Show the level curves at $k=0, k=1, k=2, k=3$. Then, sketch the graph of $z=$ $f(x, y)$.

Solution:

The range of z is $z \leq 4$, thus the values of k must be $k \leq 4$.
From the definition, $z=f(x, y)=k$.
Hence $f(x, y)=4-x^{2}-y^{2}=k$ which gives $x^{2}+y^{2}=4-k$.
When $k=0$, we obtain $x^{2}+y^{2}=4$ (a circle with radius $r=2$)
$k=1$, we obtain $x^{2}+y^{2}=3$ (a circle with radius $r=\sqrt{3}$)
$k=2$, we obtain $x^{2}+y^{2}=2$ (a circle with radius $r=\sqrt{2}$)
$k=3$, we obtain $x^{2}+y^{2}=1$ (a circle with radius $r=1$)

ल1T OpenCourseWare | ocw.utem.edu.my Universiti Teknikal Malaysia Melaka

Solution:

When $y=0$, we obtain $z=4-x^{2}$ which is a parabola on the $x z$-plane. When $x=0$, we obtain $z=4-y^{2}$ which is a parabola on the $y z$-plane.

The contour curve $x^{2}+y^{2}=4-k$

The surface of $f(x, y)=4-x^{2}-y^{2}$
is a paraboloid vertex at $(0,0,4)$.

OpenCourseWare \| ocw.utem.edu.my
 Universiti Teknikal Malaysia Melaka

Example 1.5:

Given a function $z=f(x, y)=1+\sqrt{x^{2}+y^{2}}$. Find the domain and range of the function. Show the level curves at $k=2, k=3$. Then, sketch the graph of $z=f(x, y)$.

Solution:

From the definition, $z=f(x, y)=k$.
Hence $f(x, y)=1+\sqrt{x^{2}+y^{2}}=k$ which gives $x^{2}+y^{2}=(k-1)^{2}$.
When $k=2$, we obtain $x^{2}+y^{2}=1$ (a circle with radius $r=1$)
$k=3$, we obtain $x^{2}+y^{2}=2^{2}$ (a circle with radius $r=2$)

ला OpenCourseWare | ocw.utem.edu.my
 Universiti Teknikal Malaysia Melaka

Solution:

When $y=0$, we obtain $z=1+x$ which is a linear equation, z-intercept at 1 . When $x=0$, we obtain $z=1+y$ which is a linear equation, z-intercept at 1 . Hence, the surface is a cone vertex at $(0,0,1)$.

The contour curve $x^{2}+y^{2}=(k-1)^{2}$

The surface of $f(x, y)=1+\sqrt{x^{2}+y^{2}}$
is a cone vertex at $(0,0,1)$

लाए OpenCourseWare | ocw.utem.edu.my
 Universiti Teknikal Malaysia Melaka

Exercise 1.2:

Sketch the contour curve and the surface for the function

$$
f(x, y)=-1+x^{2}+y^{2}
$$

for $k=0,3$.
[Ans: A paraboloid with vertex at $(0,0,-1)$]

Exercise 1.3:

Sketch the contour curve and the surface for the function

$$
f(x, y)=2-x-2 y
$$

for $k=0,1,2$.
[Ans: A tetrahedron plane which x - intercept at $(2,0,0), y$ - intercept at $(0,1,0)$ and z-intercept at $(0,0,2)]$

Functions with Three Variables

Definition:

Suppose G is a set of order pairs of real numbers, (x, y, z), a domain of a function with 3 independent variables x, y and z denotes as $w=f(x, y, z)$. The set of $w-$ values that associates with the numbers in G is the range of the function.

Domain (G) : The set of all pairs (x, y, z) for which the given expression is a well-defined real number.

ल1T OpenCourseWare | ocw.utem.edu.my Universiti Teknikal Malaysia Melaka

Example 1.6:

For $f(x, y, z)=\frac{x z}{y-1}$. Find $f(1,2,-2)$, domain and range of f.

Solution:

Domain: x, y and z can be any values except $y \neq 1(y-1 \neq 0)$. Hence the domain of $f(x, y, z)$ is the set

$$
D_{f}=\{(x, y, z): x, y, z \in \mathfrak{R}, y \neq 1\} .
$$

Range: The function $f(x, y, z)$ can be any values $R_{f}=\{f(x, y, z): f(x, y, z) \in \mathfrak{R}\}$.

OpenCourseWare \| ocw.utem.edu.my
 Universiti Teknikal Malaysia Melaka

Example 1.7:

For $f(x, y, z)=y^{2}-2 \sin x z$. Find $f\left(\pi, 3, \frac{1}{2}\right)$, domain and range of f.

Solution:

Domain: x, y and z can be any values. Hence the domain of $f(x, y, z)$ is the set

$$
D_{f}=\{(x, y, z): x, y, z \in \mathfrak{R}\} .
$$

Range: The term y^{2} has the range of $y \geq 0$, meanwhile the term $-2 \sin x z$ has the range $-2 \leq-2 \sin x z \leq 2$. Thus, the range of the function $f(x, y, z)$ is $R_{f}=\{f(x, y, z): f(x, y, z) \geq-2\}$.

ला OpenCourseWare | ocw.utem.edu.my Universiti Teknikal Malaysia Melaka

Exercise 1.4:

Find the values at the given point and determine the domain and range of the following functions;

1. $f(x, y, z)=x y-\ln z,\left(3,-1, e^{2}\right)$
2. $f(x, y, z)=\frac{z}{x-y},(2,0,-3)$
[Ans: 1. $D_{f}=\{(x, y, z): x, y, z \in \mathfrak{R}, z>0\}, R_{f}=\{f(x, y, z): f(x, y), z \in \mathfrak{R}\},-5$

$$
\text { 2. } \left.D_{f}=\{(x, y, z): x, y, z \in \mathfrak{R}, x \neq y\}, R_{f}=\{f(x, y, z): f(x, y, z) \in \mathfrak{R}\},-3 / 2\right]
$$

Graphing Functions of Three Variables

Definition:
The set of points in the space $w=f(x, y, z)=k$ where k are constants is called level surface.

If we set values of k are k_{1}, k_{2}, and k_{3}, thus we will get 3 level surfaces presented by S_{1}, S_{2}, and S_{3}. Each surface is the same shape of each other.

ल1T OpenCourseWare | ocw.utem.edu.my Universiti Teknikal Malaysia Melaka

Example 1.8:

Describe the level surfaces of $w=x^{2}+y^{2}+z^{2}$ for $k=1,4,9$.

Solution:

The level surfaces are the graphs of

$$
x^{2}+y^{2}+z^{2}=k
$$

When $k=1$, we obtain $x^{2}+y^{2}+z^{2}=1$. (A sphere with radius 1)
When $k=2$, we obtain $x^{2}+y^{2}+z^{2}=4$. (A sphere with radius 2)
When $k=9$, we obtain $x^{2}+y^{2}+z^{2}=9$. (A sphere with radius 3)

ค1/ OpenCourseWare | ocw.utem.edu.my Universiti Teknikal Malaysia Melaka

Solution:

When $k=1$, we obtain $x^{2}+y^{2}+z^{2}=1$. (A sphere with radius 1)
When $k=2$, we obtain $x^{2}+y^{2}+z^{2}=4$. (A sphere with radius 2)
When $k=9$, we obtain $x^{2}+y^{2}+z^{2}=9$. (A sphere with radius 3)

The surfaces of $f(x, y, z)=x^{2}+y^{2}+z^{2}$

OpenCourseWare \| ocw.utem.edu.my
 Universiti Teknikal Malaysia Melaka

Example 1.9:

Describe the level surfaces of $w=z-\sqrt{x^{2}+y^{2}}$ for $k=-1,0,1$.

Solution:

The level surfaces are the graphs of $z-\sqrt{x^{2}+y^{2}}=k$, or $z=k+\sqrt{x^{2}+y^{2}}$

When $k=-1$, we obtain $z=-1+\sqrt{x^{2}+y^{2}}$;
When $k=0$, we obtain $z=\sqrt{x^{2}+y^{2}}$;
When $k=1$, we obtain $z=1+\sqrt{x^{2}+y^{2}}$;
(a cone with vertex $(0,0,-1)$) (a cone with vertex $(0,0,0)$)
(a cone with vertex $(0,0,1)$).

ला| OpenCourseWare | ocw.utem.edu.my Universiti Teknikal Malaysia Melaka

Solution:

When $k=-1$, we obtain $z=-1+\sqrt{x^{2}+y^{2}}$;
When $k=0$, we obtain $z=\sqrt{x^{2}+y^{2}}$;
When $k=1$, we obtain $z=1+\sqrt{x^{2}+y^{2}}$;
(a cone with vertex $(0,0,-1)$) (a cone with vertex $(0,0,0)$)
(a cone with vertex $(0,0,1)$).

Exercise 1.5:

Sketch the level surfaces for the function $w=2+z-x^{2}-y^{2}$ for $k=3,6$.
[Ans: 2 paraboloids vertex at (0,0,1) and (0,0,4)]

Exercise 1.6:

Sketch the level surfaces for the function $w=y^{2}+z^{2}$ for $k=1,4$.
[Ans: A cylinder of radius 1 along x-axis when $\mathrm{k}=1$
A cylinder of radius 2 along x-axis when $\mathrm{k}=4$]

Reference

1) R. Ranom, I.W. Jamaludin, N. A. Razak, N.I.A Apandi, Engineering Mathematics, UTeM Press, 2021.
2) Abd Wahid Md. Raji, Ismail Kamis, Mohd Nor Mohamad \& Ong Chee Tiong, Advanced Calculus for Science and Engineering Students, UTM Press, 2021.

THANK YOU

