ENGINEERING MATHEMATICS 1 BMFG 1313
 DIFFERENTIATION OF VECTOR-VALUED FUNCTIONS

Ser Lee Loh ${ }^{1}$, Nur Ilyana Anwar Apandi ${ }^{2}$
${ }^{1}$ slloh@utem.edu.my, ${ }^{2 i l}$ lyana@utem.edu.my

Lesson Outcomes

Upon completion of this lesson, the student should be able to:

- Compute operation of Vector-Valued functions
- Evaluate the differentiation of Vector-Valued functions

8.1 Introduction

A vector-valued function denoted by \mathbf{r}, is a function where the domain is a set of real numbers and the range is a set of vectors.

A vector-valued function or vector function may expresses or indicates the position of a moving particle at any particular of time, t.
A vector-valued function can be written as

$$
\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k}
$$

for some scalar functions f, g and h of t, which is called the component functions of \mathbf{r}.

8.1 Introduction

A vector-valued function or vector function may expresses or indicates the position of a moving particle at any particular of time, t, as shown in Figure 1.

Figure 1: Vectors indicating a particle's position at several times

8.2 Operations of Vector-Valued Functions

Given two vector functions,

$$
\begin{aligned}
& \mathbf{F}(t)=x_{1}(t) \mathbf{i}+y_{1}(t) \mathbf{j}+z_{1}(t) \mathbf{k} \\
& \mathbf{G}(t)=x_{2}(t) \mathbf{i}+y_{2}(t) \mathbf{j}+z_{2}(t) \mathbf{k}
\end{aligned}
$$

1) Vector Sum

$$
\mathbf{F}(t)+\mathbf{G}(t)=\left[x_{1}(t)+x_{2}(t)\right] \mathbf{i}+\left[y_{1}(t)+y_{2}(t)\right] \mathbf{j}+\left[z_{1}(t)+z_{2}(t)\right] \mathbf{k}
$$

2) Product of a scalar-valued function and a vector-valued function

$$
f(t) \mathbf{F}(t)=f(t) x_{1}(t) \mathbf{i}+f(t) y_{1}(t) \mathbf{j}+f(t) z_{1}(t) \mathbf{k}
$$

3) Dot Product

$$
\mathbf{F}(t) \cdot \mathbf{G}(t)=x_{1}(t) x_{2}(t)+y_{1}(t) y_{2}(t)+z_{1}(t) z_{2}(t)
$$

8.2 Operations of Vector-Valued Functions

Given two vector functions,

$$
\mathbf{F}(t)=x_{1}(t) \mathbf{i}+y_{1}(t) \mathbf{j}+z_{1}(t) \mathbf{k} \text { and } \mathbf{G}(t)=x_{2}(t) \mathbf{i}+y_{2}(t) \mathbf{j}+z_{2}(t) \mathbf{k}
$$

4) Cross Product

$$
\begin{aligned}
& \mathbf{F}(t) \times \mathbf{G}(t)=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
x_{1}(t) & y_{1}(t) & z_{1}(t) \\
x_{2}(t) & y_{2}(t) & z_{2}(t)
\end{array}\right| \\
& =\left(y_{1}(t) z_{2}(t)-y_{2}(t) z_{1}(t)\right) \mathbf{i}-\left(x_{1}(t) z_{2}(t)-x_{2}(t) z_{1}(t)\right) \mathbf{j} \\
& +\left(x_{1}(t) y_{2}(t)-x_{2}(t) y_{1}(t)\right) \mathbf{k}
\end{aligned}
$$

5) Magnitude

$$
\begin{gathered}
\|\mathbf{F}(t)\|=\sqrt{\left[x_{1}(t)\right]^{2}+\left[y_{1}(t)\right]^{2}+\left[z_{1}(t)\right]^{2}} \\
\|f(t) \mathbf{F}(t)\|=|f(t)|\|\mathbf{F}(t)\|
\end{gathered}
$$

8.2 Operations of Vector-Valued Functions

Example:

Given that $\mathbf{F}(t)=e^{-2 t} \mathbf{i}-e^{3 t} \mathbf{j}-t \mathbf{k}$ and $\mathbf{G}(t)=e^{-t} \mathbf{i}+e^{4 t} \mathbf{j}-4 \mathbf{k}$.
Compute $e^{t} \mathbf{F}(t)+2 \mathbf{G}(t)$.
Solution:

$$
\begin{aligned}
e^{t} \mathbf{F}(t)+2 \mathbf{G}(t) & =e^{t}\left\langle e^{-2 t},-e^{3 t},-t\right\rangle+2\left\langle e^{-t}, e^{4 t},-4\right\rangle \\
& =\left\langle e^{-t},-e^{4 t},-t e^{t}\right\rangle+\left\langle 2 e^{-t}, 2 e^{4 t},-8\right\rangle \\
& =\left\langle 3 e^{-t}, e^{4 t},-t e^{t}-8\right\rangle
\end{aligned}
$$

8.2 Operations of Vector-Valued Functions

Example:

Given that $f(t)=t+1$ and $\mathbf{F}(t)=\sin t \mathbf{i}+\cos t \mathbf{j}+\mathbf{k}$.
Compute $\|f(t) \mathbf{F}(t)\|$.
Solution:

$$
\begin{aligned}
\|f(t) \mathbf{F}(t)\| & =|f(t)|\|\mathbf{F}(t)\| \\
& =|(t+1)|\|\langle\sin t, \cos t, 1\rangle\| \\
& =(t+1) \sqrt{\sin ^{2} t+\cos ^{2} t+1} \\
& =\sqrt{2}(t+1)
\end{aligned}
$$

8.2 Operations of Vector-Valued Functions

Example:

Given that $f(t)=-t^{2}$ and $\mathbf{F}(t)=2 \mathbf{i}+2 \sqrt{t} \mathbf{j}+t \mathbf{k}$.
Compute $\|f(t) \mathbf{F}(t)\|$.
Solution:

$$
\begin{aligned}
\|f(t) \mathbf{F}(t)\| & =|f(t)|\|\mathbf{F}(t)\| \\
& =\left|-t^{2}\right|\|\langle 2,2 \sqrt{t}, t\rangle\| \\
& =t^{2} \sqrt{4+4 t+t^{2}} \\
& =t^{2} \sqrt{(t+2)^{2}} \\
& =t^{2}(t+2)
\end{aligned}
$$

Exercise 8.1:

Given that $\mathbf{F}(t)=t^{2} \mathbf{i}+t \mathbf{j}-\sin t \mathbf{k}$ and $\mathbf{G}(t)=t \mathbf{i}+\frac{1}{t} \mathbf{j}-5 \mathbf{k}$. Find

1) $e^{t} \mathbf{F}(t)$
2) $\mathbf{F}(t)+2 \mathbf{G}(t)$
3) $t \mathbf{F}(t)-3 e^{t} \mathbf{G}(t)$
4) $t^{2} \mathbf{G}(t)+t^{-1} \mathbf{F}(t)$
5) $\|-2 \mathbf{F}(t)\|$

1Ans $\left(t e^{2} e^{f}, e^{e},-e^{t} \sin t\right) ;\left(t^{2}+2 t, t+\frac{2}{2},-\sin t-10\right) ;$

8.2.1 Dot Product

Dot product is used to measure the angle between two vectors. It is also needed to calculate projections of vector. The dot product of two vectors is a scalar. Hence, it is also known as scalar product.

Let $\mathbf{a}(t)=\left\langle a_{1}(t), a_{2}(t), a_{3}(t)\right\rangle$ and $\mathbf{b}(t)=\left\langle b_{1}(t), b_{2}(t), b_{3}(t)\right\rangle$. Hence

$$
\begin{aligned}
\mathbf{a} \cdot \mathbf{b} & =\left\langle a_{1}(t), a_{2}(t), a_{3}(t)\right\rangle \cdot\left\langle b_{1}(t), b_{2}(t), b_{3}(t)\right\rangle \\
& =a_{1}(t) b_{1}(t)+a_{2}(t) b_{2}(t)+a_{3}(t) b_{3}(t)
\end{aligned}
$$

Note that, \mathbf{a} and \mathbf{b} are orthogonal if $\mathbf{a} \cdot \mathbf{b}=0$

8.2.1 Dot Product

Properties of dot product for a vector-valued function is the same as the constant vector:

Let \mathbf{a}, \mathbf{b} and \mathbf{c} be vectors and k be a scalar.

- $\mathbf{a} \cdot \mathbf{b}=\mathbf{b} \cdot \mathbf{a} \quad$ (Commutative property)
- $\mathbf{a} \cdot(\mathbf{b}+\mathbf{c})=\mathbf{a} \cdot \mathbf{b}+\mathbf{a} \cdot \mathbf{c} \quad$ (Distributive property)
- $(\mathbf{a}+\mathbf{b}) \cdot \mathbf{c}=\mathbf{a} \cdot \mathbf{c}+\mathbf{b} \cdot \mathbf{c} \quad$ (Distributive property)
- $k(\mathbf{a} \cdot \mathbf{b})=k \mathbf{a} \cdot \mathbf{b}=\mathbf{a} \cdot k \mathbf{b} \quad$ (Associative property)
- $\mathbf{a} \cdot \mathbf{0}=\mathbf{0} \cdot \mathbf{a}=0$
- $\mathbf{a} \cdot \mathbf{a}=\|\mathbf{a}\|^{2}$
- $\mathbf{a} \cdot \mathbf{b}=\|\mathbf{a}\|\|\mathbf{b}\| \cos \theta$

8.2.1 Dot Product

Example:

Find the dot product of $\mathbf{F}(t)=\langle\sin t, \cos t, \ln t\rangle$ and $\mathbf{G}(t)=\langle\cos t, \sin t, t\rangle$. Solution:

$$
\begin{aligned}
\mathbf{F} \cdot \mathbf{G} & =\langle\sin t, \cos t, \ln t\rangle \cdot\langle\cos t, \sin t, t\rangle \\
& =\sin t \cos t+\cos t \sin t+t \ln t \\
& =2 \sin t \cos t+t \ln t
\end{aligned}
$$

8.2.1 Dot Product

Example:

Given vectors $\mathbf{F}(t)=\left\langle-e^{t}, 3 e^{2 t}, e^{-2 t}\right\rangle$ and $\mathbf{G}(t)=\left\langle k, e^{-t}, 2 e^{3 t}\right\rangle$. Find the value of k if vectors \mathbf{F} and \mathbf{G} are perpendicular.

Solution:

Given that \mathbf{F} and \mathbf{G} are perpendicular. Hence $\mathbf{F} \cdot \mathbf{G}=0$. Thus

$$
\begin{gathered}
\mathbf{F} \cdot \mathbf{G}=\left\langle-e^{t}, 3 e^{2 t}, e^{-2 t}\right\rangle \cdot\left\langle k, e^{-t}, 2 e^{3 t}\right\rangle=0 \\
-k e^{t}+3 e^{t}+2 e^{t}=0 \\
e^{t}(5-k)=0
\end{gathered}
$$

Since $e^{t} \neq 0$, therefore

$$
\begin{gathered}
5-k=0 \\
\therefore k=5
\end{gathered}
$$

Exercise 8.2:

1) Find the dot product for each of the following pairs of vector valued functions.
a) $\mathbf{F}(t)=\langle-1,9,-3\rangle$ and $\mathbf{G}(t)=\langle-8,-3,4\rangle$
b) $\mathbf{F}(t)=\left\langle t^{2}, \sin t, \cos t\right\rangle$ and $\mathbf{G}(t)=\left\langle e^{t}, \sin t, \cos t\right\rangle$
c) $\mathbf{F}(t)=\left\langle t^{-2}, 2,-e^{2 t}\right\rangle$ and $\mathbf{G}(t)=\left\langle t^{5},-6, e^{-t}\right\rangle$
2) Show that $\mathbf{A}(t)=\left\langle 2 t, t^{3}, t^{2}\right\rangle$ and $\mathbf{B}(t)=\left\langle t^{3},-3 t, t^{2}\right\rangle$ are orthogonal.

8.2.2 Cross Product

In this section, the second type of product of vectors is introduced, which is the cross product. The cross product of two vectors produces another vector.

$$
\mathbf{a} \times \mathbf{b}=\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right] \times\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=\left[a_{2} b_{3}-a_{3} b_{2}\right] \mathbf{i}-\left[a_{1} b_{3}-a_{3} b_{1}\right] \mathbf{j}+\left[a_{1} b_{2}-a_{2} b_{1}\right] \mathbf{k}
$$

Note that, $\mathbf{a} \times \mathbf{b}$ is orthogonal to \mathbf{a} and \mathbf{b}

8.2.2 Cross Product

Properties of cross product for a vector-valued function is the same as the constant vector:

Let \mathbf{a}, \mathbf{b} and \mathbf{c} be vectors and k be a scalar.

- $\mathbf{a} \times \mathbf{b}=-(\mathbf{b} \times \mathbf{a})$
- $\mathbf{a} \times(\mathbf{b}+\mathbf{c})=\mathbf{a} \times \mathbf{b}+\mathbf{a} \times \mathbf{c} \quad$ (Distributive property)
- $(\mathbf{a}+\mathbf{b}) \times \mathbf{c}=\mathbf{a} \times \mathbf{c}+\mathbf{b} \times \mathbf{c} \quad$ (Distributive property)
- $k(\mathbf{a} \times \mathbf{b})=k \mathbf{a} \times \mathbf{b}=\mathbf{a} \times k \mathbf{b} \quad$ (Associative property)
- $\mathbf{a} \times \mathbf{0}=\mathbf{0} \times \mathbf{a}=\mathbf{0}$
- $\mathbf{a} \times \mathbf{a}=\mathbf{0}$
- $\|\mathbf{a} \times \mathbf{b}\|=\|\mathbf{a}\|\|\mathbf{b}\| \sin \theta$

8.2.2 Cross Product

Example:

Find the cross product of $\mathbf{F}(t)=\langle\sin t, \cos t, \ln t\rangle$ and $\mathbf{G}(t)=\langle\cos t, \sin t, t\rangle$.
Solution:
$\begin{aligned} \mathbf{F} \times \mathbf{G} & =\left[\begin{array}{c}\sin t \\ \cos t \\ \ln t\end{array}\right] \times\left[\begin{array}{c}\cos t \\ \sin t \\ t\end{array}\right]=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ \sin t & \cos t & \ln t \\ \cos t & \sin t & t\end{array}\right| \\ & =[t \cos t-\ln t \sin t] \mathbf{i}-[t \sin t-\ln t \cos t] \mathbf{j}+\left[\sin ^{2} t-\cos ^{2} t\right] \mathbf{k}\end{aligned}$

8.2.2 Cross Product

Example:

Find a vector which is perpendicular to $\mathbf{F}(t)=\left\langle t^{2}, e^{2 t}, 4\right\rangle$ and $\mathbf{G}(t)=\left\langle 7 t, 2, e^{-t}\right\rangle$.
Solution:

$$
\begin{aligned}
\mathbf{F} \times \mathbf{G} & =\left[\begin{array}{c}
t^{2} \\
e^{2 t} \\
4
\end{array}\right] \times\left[\begin{array}{c}
7 t \\
2 \\
e^{-t}
\end{array}\right]=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
t^{2} & e^{2 t} & 4 \\
7 t & 2 & e^{-t}
\end{array}\right| \\
& =\left[\left(e^{2 t}\right)\left(e^{-t}\right)-(4)(2)\right] \mathbf{i}-\left[\left(t^{2}\right)\left(e^{-t}\right)-(4)(7 t)\right] \mathbf{j}+\left[\left(t^{2}\right)(2)-\left(e^{2 t}\right)(7 t)\right] \mathbf{k} \\
& =\left[e^{t}-8\right] \mathbf{i}-\left[t^{2} e^{-t}-28 t\right] \mathbf{j}+\left[2 t^{2}-7 t e^{2 t}\right] \mathbf{k}
\end{aligned}
$$

Exercise 8.3:

1) Find the cross product for each of the following pairs of vector valued functions.
a) $\quad \mathbf{F}(t)=\langle-1,9,-3\rangle$ and $\mathbf{G}(t)=\langle-8,-3,4\rangle$
b) $\mathbf{F}(t)=\left\langle t^{2}, \sin t, \cos t\right\rangle$ and $\mathbf{G}(t)=\left\langle e^{t}, \sin t, \cos t\right\rangle$
c) $\mathbf{F}(t)=\left\langle t^{-2}, 2,-e^{2 t}\right\rangle$ and $\mathbf{G}(t)=\left\langle t^{5},-6, e^{-t}\right\rangle$
d) $\mathbf{F}(t)=\left\langle t+1, e^{t}, \sqrt{t}\right\rangle$ and $\mathbf{G}(t)=\langle\sin t, 2 t, 1\rangle$
2) Given $\mathbf{A}(t)=\left\langle 2 t, t^{3}, t^{2}\right\rangle$ and $\mathbf{B}(t)=\left\langle t^{3},-3 t, t^{2}\right\rangle$, find the vector which is perpendicular to vectors \mathbf{A} and \mathbf{B}.

$$
\begin{aligned}
& \text { [Ans: }\langle 27,28,75\rangle ;\left\langle 0, e^{t} \cos t-t^{2} \cos t, t^{2} \sin t-e^{t} \sin t\right\rangle ;\left\langle 2 e^{-t}-6 e^{2 t},-t^{5} e^{2 t}-t^{-2} e^{-t},-6 t^{-2}-2 t^{5}\right\rangle ; \\
& \left.\left.\qquad e^{t}-2 t^{\frac{3}{2}}, \sqrt{t} \sin t-t-1,2 t^{2}+2 t-e^{t} \sin t\right\rangle ;\left\langle t^{5}+3 t^{3}, t^{5}-2 t^{3},-6 t^{2}-t^{6}\right\rangle\right]
\end{aligned}
$$

8.3 Differentiation of Vector Valued Function

Differentiation of vector-valued functions $\mathbf{r}(t)$ is somehow one applies the rules of differentiation to the individual components of \mathbf{r}.

Derivative and Tangent Vector

Let

$$
\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k}
$$

where f, g, and h are differentiable functions on (a, b). Then \mathbf{r} has a derivative on (a, b) and

$$
\mathbf{r}^{\prime}(t)=f^{\prime}(t) \mathbf{i}+g^{\prime}(t) \mathbf{j}+h^{\prime}(t) \mathbf{k}
$$

Note that $\mathbf{r}^{\prime}(t)$ is a tangent vector at the point corresponding to $\mathbf{r}(t)$, such that $\mathbf{r}^{\prime}(t) \neq 0$.

8.3 Differentiation of Vector Valued Function

Example:

Compute the derivative of $\mathbf{F}(t)=\langle 2 \cos t, 4 \sin t, 5 t\rangle$.
Solution:

$$
\begin{aligned}
\mathbf{F}^{\prime}(t) & =\left\langle\frac{d}{d t}(2 \cos t), \frac{d}{d t}(4 \sin t), \frac{d}{d t}(5 t)\right\rangle \\
& =\langle-2 \sin t, 4 \cos t, 5\rangle
\end{aligned}
$$

8.3 Differentiation of Vector Valued Function

Example:

Compute the acceleration of the given path:

$$
\mathbf{F}(t)=\left\langle\ln t, t^{3}, 5 t+e^{t}\right\rangle
$$

Solution:

Velocity, $\mathbf{F}^{\prime}(t)=\left\langle\frac{d}{d t}(\ln t), \frac{d}{d t}\left(t^{3}\right), \frac{d}{d t}\left(5 t+e^{t}\right)\right\rangle$

$$
=\left\langle\frac{1}{t}, 3 t^{2}, 5+e^{t}\right\rangle
$$

Acceleration, $\mathbf{F}^{\prime \prime}(t)=\left\langle\frac{d}{d t}\left(\frac{1}{t}\right), \frac{d}{d t}\left(3 t^{2}\right), \frac{d}{d t}\left(5+e^{t}\right)\right\rangle$

$$
=\left\langle-\frac{1}{t^{2}}, 6 t, e^{t}\right\rangle
$$

8.3 Differentiation of Vector Valued Function

Example:

Compute the speed of the given path:

$$
\mathbf{F}(t)=\left\langle 1, \sqrt{2} t, t^{2}\right\rangle
$$

Solution:

$$
\text { Speed, } \begin{aligned}
\|\mathbf{F}(t)\| & =\sqrt{(1)^{2}+(\sqrt{2} t)^{2}+\left(t^{2}\right)^{2}} \\
& =\sqrt{1+2 t^{2}+t^{4}} \\
& =\sqrt{\left(1+t^{2}\right)^{2}} \\
& =1+t^{2}
\end{aligned}
$$

Exercise 8.4:

1) Compute the derivative of the following position vector valued functions.
a) $\mathbf{F}(t)=\left\langle e^{2 t}, 4 e^{t}, t e^{t}\right\rangle$
b) $\mathbf{F}(t)=\left\langle t^{-2}, 2,-e^{2 t}\right\rangle$
c) $\mathbf{F}(t)=\left\langle t+1, e^{t}, \sqrt{t}\right\rangle$
d) $\mathbf{F}(t)=\left\langle t^{4}, \sqrt{t+1}, \frac{3}{t^{2}}\right\rangle$
2) Calculate the velocity, speed and acceleration of the paths given as follows.
a) $\mathbf{F}(t)=\langle 3 t-5,2 t+7\rangle$
b) $\mathbf{F}(t)=\langle 5 \cos t, 3 \sin t\rangle$
c) $\mathbf{F}(t)=\left\langle t \sin t, t \cos t, t^{2}\right\rangle$
d) $\mathbf{F}(t)=\left\langle e^{t}, e^{2 t}, 2 e^{t}\right\rangle$

8.3.1 Derivative Rules

Let \mathbf{u} and \mathbf{v} be differentiable vector-valued functions and f be a differentiable scalarvalued function and let \mathbf{c} be a constant vector. The following rules apply.

- $\frac{d}{d t}(\mathbf{c})=\mathbf{0}$
- $\frac{d}{d t}(\mathbf{u}(t)+\mathbf{v}(t))=\mathbf{u}^{\prime}(t)+\mathbf{v}^{\prime}(t)$
(Constant Rule)
- $\frac{d}{d t}(f(t) \mathbf{u}(t))=f^{\prime}(\mathrm{t}) \mathbf{u}(t)+f(t) \mathbf{u}^{\prime}(t)$
(Sum Rule)
(Product Rule)
- $\frac{d}{d t}(\mathbf{u}(t) \cdot \mathbf{v}(t))=\mathbf{u}^{\prime}(t) \cdot \mathbf{v}(t)+\mathbf{u}(t) \cdot \mathbf{v}^{\prime}(t) \quad$ (Dot Product Rule)
- $\frac{d}{d t}(\mathbf{u}(t) \times \mathbf{v}(t))=\mathbf{u}^{\prime}(t) \times \mathbf{v}(t)+\mathbf{u}(t) \times \mathbf{v}^{\prime}(t)$ (Cross Product Rule)

8.3.1 Derivative Rules

Example:

Compute $\frac{d}{d t}(f(t) \mathbf{u}(t))$ where $f(t)=2 t$ and
$\mathbf{u}(t)=\left\langle e^{2 t}, 3 t, \sin t\right\rangle$ by using product rule.

Solution:

$$
\begin{aligned}
\frac{d}{d t}(f(t) \mathbf{u}(t)) & =f^{\prime}(t) \mathbf{u}(t)+f(t) \mathbf{u}^{\prime}(t) \\
& =2\left\langle e^{2 t}, 3 t, \sin t\right\rangle+2 t\left\langle 2 e^{2 t}, 3, \cos t\right\rangle \\
& =\left\langle 2 e^{2 t}, 6 t, 2 \sin t\right\rangle+\left\langle 4 t e^{2 t}, 6 t, 2 t \cos t\right\rangle \\
& =\left\langle 2 e^{2 t}+4 t e^{2 t}, 12 t, 2 \sin t+2 t \cos t\right\rangle
\end{aligned}
$$

8.3.1 Derivative Rules

Example:

Compute $\frac{d}{d t}(\mathbf{u}(t) \cdot \mathbf{v}(t))$ where $\mathbf{u}(t)=\langle\sin t, \cos t, 2 t\rangle$ and
$\mathbf{v}(t)=\langle\cos t, \sin t, 3 t\rangle$ by using dot product rule.

Solution:

$$
\begin{aligned}
\frac{d}{d t}(\mathbf{u}(t) \cdot \mathbf{v}(t))= & \mathbf{u}^{\prime}(t) \cdot \mathbf{v}(t)+\mathbf{u}(t) \cdot \mathbf{v}^{\prime}(t) \\
= & \langle\cos t,-\sin t, 2\rangle \cdot\langle\cos t, \sin t, 3 t\rangle \\
& +\langle\sin t, \cos t, 2 t\rangle \cdot\langle-\sin t, \cos t, 3\rangle \\
= & \cos ^{2} t-\sin ^{2} t+6 t+\left(-\sin ^{2} t\right)+\cos ^{2} t+6 t \\
= & 2 \cos ^{2} t-2 \sin ^{2} t+12 t
\end{aligned}
$$

8.3.1 Derivative Rules

Example:

Compute $\frac{d}{d t}(\mathbf{u}(t) \times \mathbf{v}(t))$ where $\mathbf{u}(t)=\left\langle e^{2 t}, \cos t, 4 t\right\rangle$ and $\mathbf{v}(t)=\left\langle e^{2 t}, \sin t, 3 t\right\rangle$ by using cross product rule.

Solution:

$$
\begin{aligned}
\frac{d}{d t}(\mathbf{u}(t) \times \mathbf{v}(t))= & \mathbf{u}^{\prime}(t) \times \mathbf{v}(t)+\mathbf{u}(t) \times \mathbf{v}^{\prime}(t) \\
= & {\left[\begin{array}{c}
2 e^{2 t} \\
-\sin t \\
4
\end{array}\right] \times\left[\begin{array}{c}
e^{2 t} \\
\sin t \\
3 t
\end{array}\right]+\left[\begin{array}{c}
e^{2 t} \\
\cos t \\
4 t
\end{array}\right] \times\left[\begin{array}{c}
2 e^{2 t} \\
\cos t \\
3
\end{array}\right] } \\
= & \left\langle-3 t \sin t-4 \sin t,-6 t e^{2 t}+4 e^{2 t}, 2 e^{2 t} \sin t+e^{2 t} \sin t\right\rangle \\
& +\left\langle 3 \cos t-4 t \cos t,-3 e^{2 t}+8 t e^{2 t}, e^{2 t} \cos t-2 e^{2 t} \cos t\right\rangle \\
= & \left\langle-(3 t+4) \sin t+(3-4 t) \cos t, e^{2 t}(2 t+1), e^{2 t}(3 \sin t-\cos t)\right\rangle
\end{aligned}
$$

Exercise 8.5:

1) Compute the following derivatives.
a) $\frac{d}{d t}\left(2 t^{3} \mathbf{u}(t)\right)$ given $\mathbf{u}(t)=t \mathbf{i}-t^{2} \mathbf{j}-t^{3} \mathbf{k}$
b) $\frac{d}{d t}\left(\sqrt{t^{2}-1}\langle t, 1,2 t\rangle\right)$
2) Let $\mathbf{F}(t)=(\sin t) \mathbf{i}+4 t^{2} \mathbf{k}, \mathbf{G}(t)=(-\cos t) \mathbf{i}+2 \mathbf{j}+(2 t-1) \mathbf{k}$ and $f(t)=e^{2 t}$. Find
a) $\frac{d}{d t}[f(t) \mathbf{F}(t)]$
b) $\frac{d}{d t}[\mathbf{F}(t) \cdot \mathbf{G}(t)]$
c) $\frac{d}{d t}[\mathbf{F}(t)-\mathbf{G}(t)]$

$$
\text { [Ans 1): } \left.2 \mathrm{t}^{3}\left\langle 4,-5 t,-6 t^{2}\right\rangle ;\left(t^{2}-1\right)^{-\frac{1}{2}}\left\langle 2 t^{2}-1, t, 4 t^{2}-2\right\rangle\right]
$$

$$
\text { 2): } \left.\left\langle e^{2 t}(2 \sin t+\cos t), 0,8 e^{2 t} t(t+1)\right\rangle ;-\cos ^{2} t+\sin ^{2} t+24 t^{2}-8 t ;\langle\cos t-\sin t, 0,2(4 t-1)\rangle\right]
$$

