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Lesson Outcomes

Upon completion of this lesson, the student should be able to:

 Compute operation of Vector-Valued functions
* Evaluate the differentiation of Vector-Valued functions
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8.1 Introduction

A vector-valued function denoted by r, is a function where the domain is a set of real
numbers and the range is a set of vectors.

A vector-valued function or vector function may expresses or indicates the position of a
moving particle at any particular of time, t.

A vector-valued function can be written as
r(¢t) = f(Oi+g®)j+ h(®k
for some scalar functions f, g and h of t, which is called the component functions of r.
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8.1 Introduction

A vector-valued function or vector function may expresses or indicates the position of a
moving particle at any particular of time, t, as shown in Figure 1.

Figure 1: Vectors indicating a particle’s position at several times
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8.2 Operations of Vector-Valued Functions

Given two vector functions,
F(t) = x;(Di +y,(0)j + z, (DK
G(t) = x, ()i + y,(0)j + z,(Dk
1) Vector Sum
F(t) + G(t) = [x1(¢) + x,(D]i + [y,1(8) + y2(D]j + [2:(8) + 2, (D) ]k
2) Product of a scalar-valued function and a vector-valued function
fFOF@) = f(O)x1 (D)1 + f(Oy1(O)f + f(D)z1 (DK
3) Dot Product
F(t) - G(t) = x1(t)x2(8) + y1 () y2(£) + z1(£) z2(t)
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8.2 Operations of Vector-Valued Functions

Given two vector functions,
F(t) = x,(0)i+ y;1(D)j + z,(O)K and G(t) = x,(D)i + y,(t)j + z,(D)k

4) Cross Product

i j k

F(t) X G(t) = [x1(t) y1(t) 2z (D)

x(t) ¥y (t)  zp(¢)
S AGIAGESAGIAG) B CAGIAGEEAGIAG))
+ (21 (D) y2 (1) — %O y1 (1) )K

5) Magnitude

IFOI = v [x1(D)]? + [y1 ()] + [z (1)]?
I OFDI = IFOIIF@)]
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8.2 Operations of Vector-Valued Functions

Example:
Given that F(t) = e %ti — e3!j — tk and G(t) = e ti + e*!j — 4k.

Compute etF(¢t) + 2G(t).
Solution:
elF(t) + 2G(t) = el{e?t, —e3t, —t) + 2(e7 !, e*t, —4)
= (e7t, —et —tel) + (2e7t, 2%, —8)
= (3e7%, e, —tet — 8)
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8.2 Operations of Vector-Valued Functions

Example:

Giventhat f(t) =t + 1and F(t) =sinti+ costj+ k.

Compute [[f(£)F(t)]].
Solution:

IfFOFI = [ @OIIFI
= |(t + 1)|||(sint,cost,1)||

= (t+ 1)Vsin?t + cos?2t + 1

=V2(t +1)
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8.2 Operations of Vector-Valued Functions

Example:
Given that f(t) = —t? and F(t) = 2i + 2+/tj + tk.

Compute ||f (£)F(2)l-
Solution:
If @OFOI = [fOIIF@
= |—t2|[(2,2v¢, 1) |
= t*V4 + 4t + t2
= t2,/(t + 2)2
=t?(t+ 2)
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Giventhat F(t) = t?i + tj —sintkand G(¢t) = ti + %i — 5Kk. Find

1) e'F(t)

2) F(t) + 2G(t)

3) tF(t) — 3etG(t)
4) t*G(t) +t 1F(t)

5) lI=2FQ@)]

@O0

[Ans: (t%et, tel, —elsin t); <t2 + 2t,t +%, —sint — 10>;

t .
<t3 — 3tet, t2 — 3% —tsint + 1Set>; <t3 +t,t+1,—5¢t2 —“T’”}; 2t% + t2 + sin? t]
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8.2.1 Dot Product

Dot product is used to measure the angle between two vectors. It is also needed to
calculate projections of vector. The dot product of two vectors is a scalar. Hence, it is
also known as scalar product.

Let a(t) = (a,(t), a,(t),as;(t)) and b(t) = (b (t), b,(t), b3(t)). Hence

a-b= (Cll(t), a (t), as (t)> | (bl(t)J bZ (t), bS(t)>
= a1(t)b1(t) + az(t)b2(t) + asz(t) bz (1)

Note that, a and b are orthogonalifa-b =0
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8.2.1 Dot Product

Properties of dot product for a vector-valued function is the same as the constant
vector:

Let @, b and ¢ be vectors and k be a scalar.

e a-b=b-a (Commutative property)

a-(b+c)=a-b+a-c (Distributive property)

(a+b)-c=a-c+b-c (Distributive property)

k(a-b) =ka-b=a-kb (Associative property)
a-0=0-a=0

a-a=|all®

a-b = |a]|[|b]lcos 6

@O0
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8.2.1 Dot Product

Example:
Find the dot product of F(t) = (sint,cost,Int) and G(t) = (cost,sint,t).
Solution:
F-G=(sint,cost,Int)-{cost,sint,t)
=sintcost+ costsint+tint
= 2sintcost+tint
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8.2.1 Dot Product

Example:

Given vectors F(t) = (—ef, 3e?t,e7%t) and G(t) = (k,e~¢, 2e3t). Find the value of k
if vectors F and G are perpendicular.

Solution:

Given that F and G are perpendicular. Hence F - G = 0. Thus
F-G=(—et3e?, e %) (ke t2e3) =0
—ket + 3et +2eft =0
et(5—-k)=0
Since et # 0, therefore
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1) Find the dot product for each of the following pairs of vector valued

functions.

a) F(t) =(—1,9,-3) and G(t) =(—8,—3,4)

b) F(t) = (t?%,sint,cost) and G(t) = {ef,sint,cost)
c) F(t) =(t%2,—e?) and G(t) = (t>,—6,e7 )

2) Show that A(t) = (2t,t3,t%) and B(t) = (t3, —3t, t*) are orthogonal.

[Ans: —31;t%et 4+ 1;t3 — 12 — ef]
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8.2.2 Cross Product

In this section, the second type of product of vectors is introduced, which is the cross
product. The cross product of two vectors produces another vector.

ay
axb= [az] X |by| = lay,b; — asby]i — |aib; — aszbq]j + [aby, — a,bq]K
as

Note that,a X b is orthogonaltoaand b
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8.2.2 Cross Product

Properties of cross product for a vector-valued function is the same as the constant

vector:

Let @, b and ¢ be vectors and k be a scalar.

axb=—-(bxa)

axXx(b+c)=axb+axc (Distributive property)
(a+b)Xc=aXxXxc+bXc (Distributive property)
k(axb)=kaxb=axkb (Associative property)
ax0=0xa=0

axXxa=0

la % b|| = [|al[[[b]|sin &

@O0
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8.2.2 Cross Product

Example:
Find the cross product of F(t) = (sint,cost,Int) and G(t) = (cost,sint,t).

Solution:
sint cost
cost| X smt sint cost Int

Int cost sint t
tcost—lntsmt li — [tsint —Intcost]j +[sin®t — cos?t]k

k
FXG=
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8.2.2 Cross Product

Example:

Find a vector which is perpendicular to F(t) = (t%,e?%t,4) and G(t) = (7t,2,e7¢).

i j Kk
eZt] X [ ] £2 g2t 4
7t 2 et
=[(e*D)(e™) - @@)]i- ()™ = @D+ [(t*)(2) — (e*)(7t) Ik
= [et — 8]i — [t%e~t — 28t]j + [2t% — 7te?t]k

Solution:

FXG=
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1) Find the cross product for each of the following pairs of vector valued functions.
a) F(t)=(-1,9,-3) and G(t) =(—8,—3,4)
b) F(t) = (t?,sint,cost) and G(t) = (et,sint,cost)
c) F(t) =(t7%2,—e?") and G(t) = (t>,—6,e7t)
d) F(t) =(t+1,ett)and G(t) = (sint, 2t, 1)

2) Given A(t) = (2t,t3,t?) and B(t) = (t3, —3t, t?), find the vector which is

perpendicular to vectors A and B.

[Ans: (27,28,75);(0,et cost — t? cost,t?sint — et sint); (2e ¢ — 6e2t, —t%e?t — t=2e7t, —6t72 — 2t5);

3
<et — 2tz,\/tsint —t — 1,2t% + 2t — et sin t>; (t5 + 3t3,t5 — 2t3,—6t2 — t°)]
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8.3 Differentiation of Vector Valued Function

Differentiation of vector-valued functions r(t) is somehow one applies the rules of
differentiation to the individual components of r.

Derivative and Tangent Vector
Let

r(t) = f(Oi+ g)j+ h(OKk,
where f, g,and h are differentiable functions on (a,b). Then r has a derivative on
(a,b) and

r'(t) =f'(t)i+ g (t)j+ h' (t)k.

Note that r'(t) is a tangent vector at the point corresponding to r(t), such that
r'(t) 0.

@O0
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8.3 Differentiation of Vector Valued Function

Example:
Compute the derivative of F(t) = (2 cost,4sint, 5t).
Solution:

F’(t)—(dZ t d4't dSt)
= dt( COS )'dt( sin )'dt( )
= (—2sint,4cost,5).
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8.3 Differentiation of Vector Valued Function

Example:

Compute the acceleration of the given path:
F(t) = (Int,t3, 5t + et).

Solution:
Velocity, F'(t) = (= (Int), = (£3), <= (5t + et))
’ dt " dt " dt
= (%,Stz, 5+ et).
- meey = (L Ly Lqp2y L t
Acceleration, F''(t) = (dt (), ;Bt?),—(5+e )

1
= (-t—2,6t,€t>.
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8.3 Differentiation of Vector Valued Function

Example:
Compute the speed of the given path:
F(t) = (1,V2¢t, t2).

Solution:

Speed, ||[F(t)|| = J(l)z + (\/Et)z + (t2)?

=1+ 2t2 +t4
= V(1 +1¢2)?
=1+ t?
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1) Compute the derivative of the following position vector valued functions.
a) F(t) = (e?t, 4et, tet)
b) F(t) = (t7%,2,—e?t)
c) F(t) =(t+1,ett)

d) F(t) = (t*VE+1,3)
2) Calculate the velocity, speed and acceleration of the paths given as follows.
a) F(t)=(3t—5,2t+7)
b) F(t) =(5cost,3sint)
c) F(t) =(tsint,tcost,t?)
d) F(t) = (e, e?t, 2et)

@O0

1 1
[Ans 1): (2e2t, 4et, et + tet); (—2t73,0, —2e2t); <1, et,%t_5>;<4t3,% (¢ + 1)‘5,—6t—3>]

[Ans 2): V13;V9 + 16sin? t;V1 + 5t2; etV5 + 4e2t]
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8.3.1 Derivative Rules

Let u and v be differentiable vector-valued functions and f be a differentiable scalar-
valued function and let ¢ be a constant vector. The following rules apply.

. %(c) —0 (Constant Rule)
= (u® +v(®) =) + V() (Sum Rule)

. %(f(t)u(t)) = f'(Ou(®) + f(Ou'(t) (Product Rule)

. % (u(®) - v(®)) =u'(t) - v(t) +u(t) - v'(t) (Dot Product Rule)

o % (u() x v(t)) = u'(t) x v(t) + u(t) x v'(t)(Cross Product Rule)
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8.3.1 Derivative Rules

Example:
Compute % (f(t)u(t)) where f(t) = 2t and
u(t) = (e?t, 3t,sin t) by using product rule.

Solution:

%(f(t)u(t)) = f'(®Ou(t) + f(Du'(¢)
= 2(e?t,3t,sint) + 2t(2e?t, 3, cos t)
= (2e%t,6t,2sint) + (4te?t, 6t,2t cos t)
= (2e?t + 4te?t,12t,2sint + 2t cos t)
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8.3.1 Derivative Rules

Example:

Compute % (u(t) : v(t)) where u(t) = (sint,cost,2t) and
v(t) = (cost,sint, 3t) by using dot product rule.

Solution:

%(u(t) -v(t)) =u'(t) -v(t) +u(t) - v'(t)

= (cost,—sint,2)-{cost,sint, 3t)
+(sint,cost,2t) - (—sint,cost, 3)
cos®t —sin®t + 6t + (—sin?t) + cos? t + 6t
= 2cos’t —2sin®t + 12t
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8.3.1 Derivative Rules

Example:
Compute % (u(t) X v(t)) where u(t) = (e?t, cost, 4t) and

v(t) = {e?!,sint, 3t) by using cross product rule.

Solution:

() x V() = W) X V() + u(t) x V()

202t o2t ] [ o2t _ZeZt_
= —sint]>< sint| + |cost| X |cost
4 | 3t | 4t | 3

= (=3tsint — 4sint, —6te?t + 4e2t 22t sint + e?t sint)
+ (3 cost —4tcost,—3e?t + 8te?t,e?t cost — 2e*t cos t)
=(—(3t+4)sint + (3 —4t)cost,e? (2t + 1),e?*(3sint — cos t))
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1) Compute the following derivatives.
a) % (2t3u(t)) given u(t) = ti — t%j — t3k
b) == (VEZ =1 (¢, 1,20))
2) Let F(t) = (sin t)i + 4t%K, G(t) = (—cos t)i + 2j + (2t — 1)k and f(t) = e?t.Find
a) = [f(O)F(®)]
b) < [F() - G(D)]

c) = [F(®) - G(t)]

1
[Ans 1): 2t3(4, —5t, —6t2); (t%2 — 1) 2(2t% — 1,¢,4t% — 2)]

2): (e?t(2sint + cost),0,8e?'t(t + 1)); — cos? t + sin? t + 24t% — 8t;{cost —sint,0,2(4t — 1))]
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