ENGINEERING MATHEMATICS 1 BMFG 1313 INTEGRATION

Nur Ilyana Anwar Apandi¹, Ser Lee Loh²

¹<u>ilyana@utem.edu.my</u>, ²<u>slloh@utem.edu.my</u>

Lesson Outcomes

Upon completion of this lesson, the student should be able to:

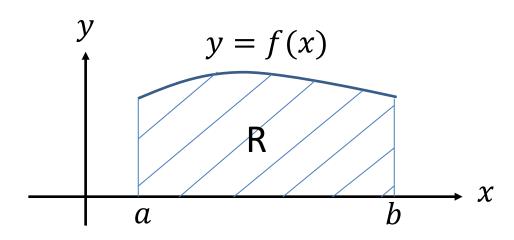
- Evaluate Integration by Substitution
- Evaluate Integration by Parts
- Evaluate Integration involving Trigonometric Functions
- Evaluate Integration involving Exponential Functions

7.1 Introduction of Integration

Integration is anti-derivatives.

Integration is used to find areas, volumes, central points etc. Integration is a direct relationship between two variables that can be found from the relationship involving the rate of change of the two variables.

The simplest application: Area $R = \int_a^b f(x) dx$



7.1 Introduction of Integration

Integration of Trigonometry Functions

$$\int \cos x \, dx = \sin x + c$$

$$\int \sin x \, dx = -\cos x + c$$

$$\int \sec^2 x \, dx = \tan x + c$$

$$\int \sec x \tan x \, dx = \sec x + c$$

$$\int \csc x \cot x \, dx = -\csc x + c$$

$$\int \csc^2 x \, dx = -\cot x + c$$

Note that c is a constant of indefinite integration.

7.1 Introduction of Integration

Integration of Exponential, Hyperbolic and The Related Functions:

$$\int e^x dx = e^x + c$$

$$\int \frac{1}{x} dx = \ln x + c$$

$$\int \cosh x dx = \sinh x + c$$

$$\int \sinh x dx = \cosh x + c$$

$$\int \operatorname{sech}^2 x dx = \tanh x + c$$

Example:

Evaluate $\int \sec^2(3x-5) dx$ using integration by substitution.

Solution:

Let
$$u = 3x - 5$$
. Given that $\frac{du}{dx} = 3$. Thus, $\frac{1}{3}du = dx$.

This implies
$$\int \sec^2(3x - 5) dx = \int \sec^2 u \cdot \frac{1}{3} du$$

$$= \frac{1}{3} \int \sec^2 u \ du = \frac{1}{3} \tan u + c$$

$$= \frac{1}{3}\tan(3x - 5) + c$$

Example:

Find the indefinite integrals of $\frac{1}{2+\sqrt{x}}$.

Solution:

Let
$$u = \sqrt{x}$$
 and $u^2 = x$. Given that $2u \frac{du}{dx} = 1$. Thus, $2u \ du = dx$

 $= 2\sqrt{x} - 4 \ln|2 + \sqrt{x}| + c$

This implies
$$\int \frac{1}{2+\sqrt{x}} dx = \int \frac{1}{2+u} 2u \ du$$

= $\int \frac{2u}{2+u} \ du = \int 2 - \frac{4}{2+u} \ du$
= $2u - 4 \ln|2 + u| + c$

Example:

By using integration of substitution, evaluate $\int_2^4 \frac{x}{x^2+7} dx$.

Solution:

Let
$$u = x^2 + 7$$
. Given that $\frac{du}{dx} = 2x$, $\frac{1}{2}du = x dx$

when x = 2, u = 11 and when x = 4, u = 23

This implies,
$$\int_{2}^{4} \frac{x}{x^{2}+7} dx = \int_{11}^{23} \frac{1}{u} \cdot \frac{1}{2} du = \frac{1}{2} \int_{11}^{23} \frac{1}{u} du$$

$$= \frac{1}{2} \ln u |_{11}^{23}$$

$$= \frac{1}{2} (\ln 23 - \ln 11)$$

$$= 0.3688$$

Example:

Evaluate $\int 2e^{1-2t} dt$.

Solution:

Let
$$u=1-2t$$
. Given that $\frac{du}{dt}=-2$. Thus, $-du=2dt$. This implies $\int e^{2-t} \, dt = -\int e^u \cdot du$
$$= -e^u + c$$

 $=-e^{1-2t}+c$

Example:

By using integration of substitution, evaluate $\int \frac{1}{\sqrt{1+x}+2} dx$.

Solution:

Let
$$u = \sqrt{1+x} + 2$$
 such that $(u-2)^2 = 1 + x$.

Given that
$$\frac{du}{dx}(2u-4)=1$$
 and $dx=(2u-4)du$.

This implies,
$$\int \frac{1}{\sqrt{1+x}+2} dx = \int \frac{2u-4}{u} du = \int 2 - \frac{4}{u} du = 2u - 4 \ln u + c$$
.

Thus,
$$\int \frac{1}{\sqrt{1+x}+2} dx = 2\sqrt{1+x} + 4 - 4\ln|\sqrt{1+x} + 2| + c$$
.

If f(x) contains the function as shown in table below, integration by substitution by using the trigonometry function may be useful to solve the integration.

If $f(x)$ contains	Use substitution
$\sqrt{a^2-x^2}$	$x = a \sin \theta$
$\sqrt{a^2 + x^2}$	$x = a \tan \theta$
$\sqrt{x^2-a^2}$	$x = a \sec \theta$

Example:

Find the indefinite integrals of $\sqrt{4-x^2}$.

Solution:

Let $x = 2 \sin \theta$.

Given that $x^2 = 4 \sin^2 \theta$ and $\frac{dx}{d\theta} = 2 \cos \theta$.

Hence $\sqrt{4-x^2} = \sqrt{4-4\sin^2\theta} = 2\cos\theta$ and $dx = 2\cos\theta \ d\theta$.

Thus implies, $\int \sqrt{4-x^2} dx = \int \sqrt{4-4\sin^2\theta} \cdot 2\cos\theta d\theta$

Solution (continue):

$$\int \sqrt{4 - x^2} \, dx = 2 \int \sqrt{4 - 4 \sin^2 \theta} \cos \theta \, d\theta$$

$$= \int 2\cos\theta \sqrt{4(1-\sin^2\theta)} d\theta$$

$$=\int 2\cos\theta\sqrt{4(\cos^2\theta)}\ d\theta$$

$$=\int 2\cos\theta (2\cos\theta)d\theta = \int 4\cos^2\theta d\theta$$

$$= \int 4 \left(\frac{\cos 2\theta + 1}{2} \right) d\theta = 2 \int \cos 2\theta + 1 d\theta$$

$$=2\left(\frac{\sin 2\theta}{2}+\theta\right)+c$$

$$= \sin 2\theta + 2\theta + c$$

$$= \frac{1}{2}x\sqrt{4-x^2} + 2\sin^{-1}\frac{x}{2} + c$$

Use identity $\cos 2\theta = 2\cos^2\theta - 1$

Use identity $\sin 2\theta = 2 \sin \theta \cos \theta$ since $x = 2 \sin \theta$, hence $\cos \theta = \sqrt{4 - x^2}$

From $x = 2 \sin \theta$, we obtain $\theta = \sin^{-1} \frac{x}{2}$

Example:

Find the indefinite integrals of $x\sqrt{x^2-2}$.

Solution:

Let $x = \sqrt{2}\sec\theta$.

Given that $x^2 = 2 \sec^2 \theta$ and $\frac{dx}{d\theta} = \sqrt{2} \sec \theta \tan \theta$.

Hence $\sqrt{x^2-2}=\sqrt{2\sec^2\theta-2}$ and $dx=\sqrt{2}\sec\theta\tan\theta\ d\theta$.

Thus implies, $\int x\sqrt{x^2-2}\,dx = \int \sqrt{2}\sec\theta\,\sqrt{2(\sec^2\theta-1)}\cdot\sqrt{2}\sec\theta\tan\theta\,d\theta$

Solution (continue):

$$\int x\sqrt{x^2 - 2} \, dx = \int 2\sqrt{2} \sec \theta \tan \theta \cdot \sec \theta \tan \theta \, d\theta = \int 2\sqrt{2} \sec^2 \theta \cdot \tan^2 \theta \, d\theta$$

By using substitution

Let
$$u = \tan \theta$$
 and $\frac{du}{d\theta} = \sec^2 \theta$ given that $du = \sec^2 \theta d\theta$.

$$\int 2\sqrt{2} \sec^2 \theta \cdot \tan^2 \theta d\theta = 2\sqrt{2} \int u^2 du = \frac{2\sqrt{2}}{3} u^3 + c = \frac{2\sqrt{2}}{3} \tan^3 \theta + c$$

From
$$x = \sqrt{2} \sec \theta \implies \cos \theta = \frac{\sqrt{2}}{x}$$
, it gives $\tan \theta = \sqrt{\frac{x^2 - 2}{2}}$.

Hence,
$$\int x\sqrt{x^2-2} \, dx = \frac{2\sqrt{2}}{3} \left(\frac{x^2-2}{2}\right)^{\frac{3}{2}} + c = \frac{1}{3}(x^2-2)^{\frac{3}{2}} + c$$

Exercise 7.1:

Evaluate each of the following functions by using integration by substitution.

1)
$$\int \frac{12x^2+16}{x^3+4x} dx$$

2)
$$\int \frac{4x+6}{(x^2+3x+7)^4} dx$$

3)
$$\int \frac{x}{\sqrt{1-3x^2}} \ dx$$

[Ans: 1)
$$4 \ln |x^3 + 4x| + C$$
; 2) $-\frac{2}{3(x^2 + 3x + 7)^3} + C$; 3) $-\frac{1}{3}\sqrt{1 - 3x^2} + c$]

Exercise 7.1:

Evaluate each of the following functions by using integration by substitution.

4)
$$\int_0^2 2x^2 \sqrt[4]{5x^3 + 4} \ dx$$

$$5) \quad \int_{1}^{2} \frac{2x^3 + 3}{(x^4 + 6x)^3} \, dx$$

6)
$$\int_0^{\pi} (2x-3)\sin(3x^2-9x) dx$$

Exercise 7.1:

Evaluate each of the following functions by using integration by substitution.

7)
$$\int x\sqrt{5x-2} \ dx$$

8)
$$\int \frac{x^2-1}{x^3-3x+2} \ dx$$

9)
$$\int \cos x \left(\sin^3 x \right) dx$$

10)
$$\int \tan x \ dx$$

$$11) \quad \int \frac{2}{3+\sqrt{x+1}} \ dx$$

$$12) \int \sqrt{1-x^2} \ dx$$

[Ans: 7)
$$\frac{2}{125} (5x - 2)^{\frac{5}{2}} + \frac{4}{75} (5x - 2)^{\frac{3}{2}} + c; 8) \frac{1}{3} \ln|x^3 - 3x + 2| + c; 9) \frac{1}{4} \sin^4 x + c; 10) - \ln|\cos x| + c;$$

$$11) 4\sqrt{x + 1} - 12 \ln|3 + \sqrt{x + 1}| + c; 12) \frac{1}{2} x\sqrt{1 - x^2} + \frac{1}{2} \sin^{-1} x + c]$$

Based on the product rule of differentiation,

$$\frac{d}{dx}[uv] = u\frac{dv}{dx} + v\frac{du}{dx}$$

$$= uv' + vu'$$

$$uv = \int uv' dx + \int vu' dx$$

Hence, formula for Integration by Parts is given as

$$\int uv' \, dx = uv - \int vu' \, dx$$

Alternatively: $\frac{d}{dx}[uv] = u\frac{dv}{dx} + v\frac{du}{dx}$ $uv = \int u \, dv + \int v \, du$ Hence, $\int u \, dv = uv - \int v \, du$

Note that choosing u is based on Rules L-PeT (i.e. Logarithm, Polynomial, exponential and Trigonometry)

Example:

Find the indefinite integrals of xe^{2x} .

Solution:

By using integration by parts,

$$u = x, \qquad \frac{dv}{dx} = e^{2x}$$
$$\frac{du}{dx} = 1, \qquad v = \frac{1}{2}e^{2x}.$$

Hence,
$$\int xe^{2x} dx = \frac{1}{2}xe^{2x} - \int \frac{1}{2}e^{2x} dx$$
$$= \frac{1}{2}xe^{2x} - \frac{1}{4}e^{2x} + c$$

$$\int u \, dv = uv - \int v \, du$$

Example:

Find the indefinite integrals of $x^2 \sin x$.

Solution:

By using integration by parts,

$$u = x^{2}, \quad \frac{dv}{dx} = \sin x$$

$$\frac{du}{dx} = 2x, \quad v = -\cos x.$$

Hence, $\int x^2 \sin x \, dx = -x^2 \cos x - \int -2x \cos x \, dx$

Now, to solve $\int 2x \cos x \, dx$,

$$u = 2x, \qquad \frac{dv}{dx} = \cos x$$

$$\frac{du}{dx} = 2, \qquad v = \sin x$$

$$\int u \, dv = uv - \int v \, du$$

Example:

Find the indefinite integrals of $x^2 \sin x$.

Solution (continue):

$$\int x^2 \sin x \, dx = -x^2 \cos x - \int -2x \cos x \, dx$$

 $\int u \, dv = uv - \int v \, du$

$$= -x^{2} \cos x + \int 2x \cos x \, dx$$

$$= -x^{2} \cos x + 2x \sin x - \int 2 \sin x \, dx$$

$$= -x^{2} \cos x + 2x \sin x - 2(-\cos x) + c$$

$$= -x^{2} \cos x + 2x \sin x + 2 \cos x + c$$

Tabular method is an alternative way to the method of Integration by Parts,

$$\int uv'\,dx = uv - \int vu'\,dx$$

Sign +/-	$ \textbf{Differentiate} \ u $	Integrate v'
+	u (1)	v'
_	u'	2 v
+	:	:
:	(Repeating differentiate the	(Repeating integrate the
(Alternate signs	function from one row to the	function from one row to the
started from +)	next row)	next row)

Question: How to decide the u and v' of the integrand?

There are a lot of type of functions which can be solved by integration by parts or tabular method. Among of them, the most common used functions are the **product** functions of

Case 1: Polynomial and exponential functions

Case 2: Polynomial and $\sin \theta$ or $\cos \theta$ functions

Case 3: Exponential and $\sin \theta$ or $\cos \theta$ functions

For case 1 and case 2, choose the polynomial function as u and let the exponential function or $\sin \theta$ or $\cos \theta$ be v'. Let say $\int uv' dx$,

Sign +/-	$ \textbf{Differentiate} \ u $	Integrate v'
+	 	v'
	u'	v
:		· ·
+	0	V

(Repeating differentiate the polynomial function until zero)

(Repeating integrate the function from one row to the next row and stop at the same row of zero from column of u)

Find the product functions according to the colored arrows.

The answer will be the linear combination of all the product functions.

For case 3, one is free to choose exponential, $\sin \theta$ or $\cos \theta$ to be either u or v'.

Sign +/-	$ \textbf{Differentiate} \ u $	Integrate v'
+ -	$\overline{}$ u	v'
_	u'	v
+	u'' ←	$\int v' dx$

(Differentiate function u twice)

(Integrate function v' twice)

Find all product functions according to the colored arrows.

For the arrows pointing from left to right, let the linear combination of these product functions be g. Also, let the product function in the last row (from red arrows) be h. The integration will be

$$\int uv' \, dx = g + \int h \, dx$$

where $\int h dx = k \int uv' dx$, k is a constant value. Lastly, solve for $\int uv' dx$.

Example:

Find the indefinite integrals of $x^2 \sin 3x$.

Solution:

Construct Table of Tabular Method

Sign +/-	Differentiate	Integrate
+ -	x^2	sin 3x
_	\rightarrow 2x	$-\frac{1}{3}\cos 3x$
+ -	2	$-\frac{1}{9}\sin 3x$
_	0	$\frac{1}{27}\cos 3x$

$$\int x^2 \sin 3x \, dx = -\frac{1}{3}x^2 \cos 3x + \frac{2}{9}x \sin 3x + \frac{2}{27}\cos 3x + c$$

Example:

Find the indefinite integrals of xe^{2x} .

Solution:

Sign +/-	Differentiate	Integrate
+	\boldsymbol{x}	e^{2x}
_	1	$e^{2x}/2$
+	0	$e^{2x}/4$

From the Table,

$$\int xe^{2x} dx = \frac{1}{2}xe^{2x} - \frac{1}{4}e^{2x} + c.$$

Example:

Find the indefinite integrals of $e^{\pi x} \sin x$.

Solution:

Sign +/-	Differentiate	Integrate
+	$e^{\pi x}$	sin x
_	$\pi e^{\pi x}$	$-\cos x$
+	$\pi^2 e^{\pi x}$	$-\sin x$

From the Table,

$$\int e^{\pi x} \sin x \, dx = -e^{\pi x} \cos x + \pi e^{\pi x} \sin x - \pi^2 \int e^{\pi x} \sin x \, dx$$

Rearrange the equation, such that

$$(1+\pi^2)\int e^{\pi x}\sin x\,dx = -e^{\pi x}\cos x + \pi e^{\pi x}\sin x$$

Thus,
$$\int e^{\pi x} \sin x \, dx = \frac{1}{1+\pi^2} (-e^{\pi x} \cos x + \pi e^{\pi x} \sin x) + c.$$

Exercise 7.2:

Find the indefinite integrals of the following functions.

- 1) x^3e^{-3x}
- $2) \quad x^2 \cos 4x$
- 3) $(3x 2) \cos 2\pi x$
- 4) $(x^2 + 1) \sin \frac{5\pi x}{3}$

[Ans: 1)
$$-\frac{1}{3}x^3e^{-3x} - \frac{1}{3}x^2e^{-3x} - \frac{2}{9}xe^{-3x} - \frac{2}{27}e^{-3x} + c$$
; 2) $\frac{1}{4}x^2\sin 4x + \frac{1}{8}x\cos 4x - \frac{1}{32}\sin 4x + c$;
3) $\frac{(3x-2)}{2\pi}\sin 2\pi x + \frac{3}{4\pi^2}\cos 2\pi x + c$; 4) $-\frac{3}{5\pi}(x^2+1)\cos \frac{5\pi x}{3} + \frac{18x}{25\pi^2}\sin \frac{5\pi x}{3} + \frac{54}{125\pi^3}\cos \frac{5\pi x}{3} + c$;

Exercise 7.2:

Find the indefinite integrals of the following functions.

- 5) $e^{2x} \sin 3x$
- 6) $e^{-x} \cos 2x$
- 7) $x \ln x$

[Ans: 5)
$$-\frac{3}{13}e^{2x}\cos 3x + \frac{2}{13}e^{2x}\sin 3x + c$$
;

6)
$$\frac{2}{5}e^{-x}\sin 2x - \frac{1}{5}e^{-x}\cos 2x + c$$
; 7) $\frac{x^2}{2}\ln x - \frac{x^2}{4} + c$;