ENGINEERING MATHEMATICS 1 BMFG 1313 NUMERICAL DIFFERENTIATION

Ser Lee Loh¹, Irma Wani Jamaludin²

¹slloh@utem.edu.my, ²irma@utem.edu.my

Lesson Outcomes

Upon completion of this lesson, the student should be able to:

- Find the first and second derivatives of a function by using forward,
 backward and central differencing approximation.
- Find the first and second derivatives of a function by using high accuracy differentiation formula.

Numerical Differentiation

(Estimating the derivative of a function at a specific point)

Forward, Backward, Central
Difference Approximation of
First Derivatives

Forward, Backward, Central Difference Approximation of Second Derivatives

Taylor Series Expansion / Interpolation

Forward D.A.	Accuracy $O(h)$:
Backward D.A.	
Centered D.A.	
High Accuracy F.D.A.	Accuracy $O(h^2)$:
High Accuracy B.D.A.	
High Accuracy C.D.A.	Accuracy $O(h^4)$:

Forward D.A.	Accuracy $O(h)$:
Backward D.A.	
Centered D.A.	
High Accuracy F.D.A.	Accuracy $O(h^2)$:
High Accuracy B.D.A.	
High Accuracy C.D.A.	Accuracy $O(h^4)$:

Why we need numerical differentiation?

Given a complicated function

i.e.
$$f(x) = \left[\cos(-9x^5 + e^{-2x})e^{x^2+4}\right]$$

Evaluate f''(-3.2).

Method 1

Step 1: Find the derivative of f' followed by f''.

Step 2: Evaluate f''(-3.2).

Which one is faster and easier?

Method 2

Method 2

Step 1: Construct some points from f(x), e.g. f(-5), f(-3), f(-1)

Step 2: Evaluate f''(-3.2) by numerical differentiation.

Taylor Series Expansion

A one-dimensional Taylor series is an expansion of a real function f(x) about a point x = a:

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^{2} + \frac{f^{(3)}(a)}{3!}(x - a)^{3} + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^{n} + \dots$$

It is used to approximate the first and the second derivatives.

Derivation of Formulas:

Taylor's Series:

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \frac{f^{(3)}(a)}{3!}(x - a)^3 + \cdots$$

$$f(x_{i+1}) = f(x_i) + f'(x_i)(x_{i+1} - x_i) + \frac{f''(x_i)}{2!}(x_{i+1} - x_i)^2 + \frac{f^{(3)}(x_i)}{3!}(x_{i+1} - x_i)^3 + \cdots$$
 (1)

First Order FDA:

Let $x_i = x$ and $x_{i+1} = x + h$ in Eqn (1),

$$f(x+h) = f(x) + f'(x)(h) + \frac{f''(x)}{2!}(h)^2 + \frac{f^{(3)}(x)}{3!}(h)^3 + \cdots$$
 (2)

 $f(x+h)\approx f(x)+f'(x)(h) \text{ and hence,}$

$$f'(x) = \frac{f(x+h) - f(x)}{h}$$

First Order BDA:

Replace h with -h in Eqn (2),

$$f(x-h) = f(x) - hf'(x) + h^2 \frac{f''(x)}{2!} - h^3 \frac{f^{(3)}(x)}{3!} + \cdots$$
 (3)

 $f(x-h)\approx f(x)-hf'(x)$ and hence,

$$f'(x) = \frac{f(x) - f(x - h)}{h}$$

First Order CDA:

Cancel out the term of $\frac{f''(x)}{2!}(h)^2$ in Equations (2) & (3): Eqn (2) – Eqn (3):

$$f(x+h) - f(x-h) = \left[f(x) + f'(x)(h) + h^2 \frac{f''(x)}{2!} + h^3 \frac{f^{(3)}(x)}{3!} + \cdots \right]$$
$$- \left[f(x) - hf'(x) + h^2 \frac{f''(x)}{2!} - h^3 \frac{f^{(3)}(x)}{3!} + \cdots \right]$$
(4)

 $f(x+h) - f(x-h) \approx 2hf'(x)$ and hence,

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h}$$

First Order HAFDA:

$$f(x+h) = f(x) + f'(x)(h) + \frac{f''(x)}{2!}(h)^2 + \frac{f^{(3)}(x)}{3!}(h)^3 + \cdots$$
 (2)

Replace h with 2h in Eqn (2),

$$f(x+2h) = f(x) + f'(x)(2h) + \frac{f''(x)}{2!}(2h)^2 + \frac{f^{(3)}(x)}{3!}(2h)^3 + \cdots$$

$$f(x+2h) = f(x) + 2hf'(x) + 4h^2 \frac{f''(x)}{2!} + 8h^3 \frac{f^{(3)}(x)}{3!} + \cdots$$
(5)

Cancel out the term of $\frac{f''(x)}{2!}(h)^2$ in Equations (2) & (5): 4Eqn (2) – Eqn (5):

$$4f(x+h) - f(x+2h) \approx 3f(x) + 2hf'(x) - 4h^3 \frac{f^{(3)}(x)}{3!} + \cdots$$
 (6)

$$\therefore 4f(x+h) - f(x+2h) \approx 3f(x) + 2hf'(x) \text{ and hence,}$$

$$f'(x) = \frac{-f(x+2h) + 4f(x+h) - 3f(x)}{2h}$$

First Order HABDA:

Replace h with -h in Eqn (6):

$$4f(x-h) - f(x-2h) \approx 3f(x) - 2hf'(x) + 4h^3 \frac{f^{(3)}(x)}{3!} + \cdots$$

$$4f(x-h) - f(x-2h) \approx 3f(x) - 2hf'(x) \text{ and hence,}$$

$$f'(x) = \frac{3f(x) - 4f(x-h) + f(x-2h)}{2h}$$

(9)

First Order HACDA:

Replace h with -h in Eqn (5):

$$f(x-2h) = f(x) - 2hf'(x) + 4h^2 \frac{f''(x)}{2!} - 8h^3 \frac{f^{(3)}(x)}{3!} + \cdots$$
 (8)

Cancel out the terms of $\frac{f''(x)}{2!}$ and $\frac{f^{(3)}(x)}{3!}$ in Equations (2,3,5,8):

$$8f(x+h) - 8f(x-h) - f(x+2h) + f(x-2h) \approx 8\left[f(x) + hf'(x) + h^2 \frac{f''(x)}{2!} + h^3 \frac{f^{(3)}(x)}{3!} + \cdots\right]$$

$$-8\left[f(x) - hf'(x) + h^2 \frac{f''(x)}{2!} - h^3 \frac{f^{(3)}(x)}{3!} + \cdots\right] - \left[f(x) + 2hf'(x) + 4h^2 \frac{f''(x)}{2!} + 8h^3 \frac{f^{(3)}(x)}{3!} + \cdots\right]$$

$$+ \left[f(x) - 2hf'(x) + 4h^2 \frac{f''(x)}{2!} - 8h^3 \frac{f^{(3)}(x)}{3!} + \cdots \right]$$

$$\therefore 8f(x+h) - 8f(x-h) - f(x+2h) + f(x-2h) \approx 12hf'(x)$$

and hence,

$$f'(x) = \frac{-f(x+2h) + 8f(x+h) - 8f(x-h) + f(x-2h)}{12h}$$

List of formulas derived in Section 6.4 for the first order of derivatives:

Forward D.A. [O(h)]

$$f'(x) = \frac{f(x+h) - f(x)}{h}$$

$$f'(x) = \frac{f(x) - f(x - h)}{h}$$

Backward D.A. [O(h)]

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h}$$

Centered D.A. $[O(h^2)]$

High Accuracy $[O(h^2)]$

Forward D.A.
$$f'(x) = \frac{-f(x+2h) + 4f(x+h) - 3f(x)}{2h}$$

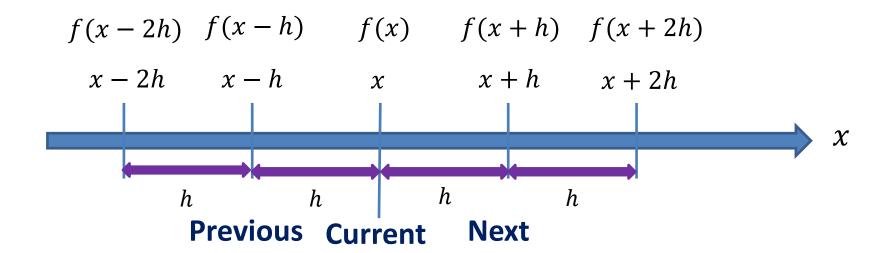
$$f'(x) = \frac{3f(x) - 4f(x - h) + f(x - 2h)}{2h}$$

High Accuracy Backward D.A. $[O(h^2)]$

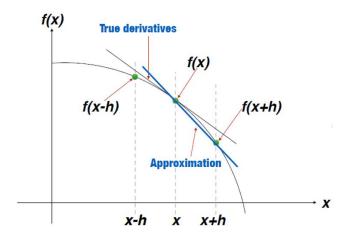
$$f'(x) = \frac{-f(x+2h) + 8f(x+h) - 8f(x-h) + f(x-2h)}{12h}$$

High Accuracy Centered D.A. $[O(h^4)]$

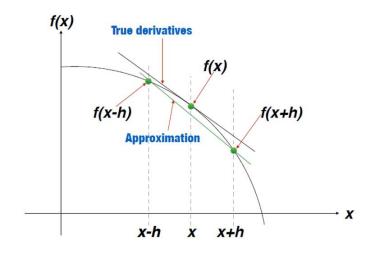
Time Line:



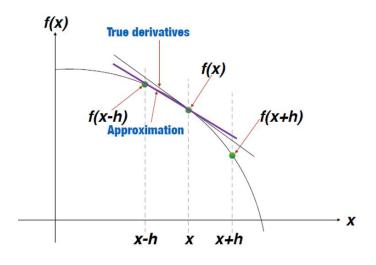
Step size: *h*



Forward Difference Approximation with accuracy of O(h)



Centered Difference Approximation with accuracy of $O(h^2)$



Backward Difference Approximation with accuracy of O(h)

Example 1:

Estimate the first derivative of a function

$$f(x) = 0.13x^5 - 0.75x^3 + 0.12x^2 - 0.5x + 1$$

at x = 0.5 with a step size of h = 0.25 and h = 0.50 using:

- (a) forward and backward difference approximations of O(h)
- (b) centered difference approximation of $O(h^2)$ to estimate the first derivative of
- (c) Note that the derivative can be calculated directly as

$$f'(x) = 0.65x^4 - 2.25x^2 + 0.24x - 0.5$$

and the true value as f'(0.5) = -0.901875. Hence, calculate the percent relative error for the cases above. Carry six decimal places along the computation.

Solution (a):

• For h = 0.25, the function $f(x) = 0.13x^5 - 0.75x^3 + 0.12x^2 - 0.5x + 1$ can be employed to obtain:

$$x - h = 0.25$$
 \rightarrow $f(x - h) = 0.870908$
 $x = 0.5$ \rightarrow $f(x) = 0.690313$
 $x + h = 0.75$ \rightarrow $f(x + h) = 0.406943$

• For h = 0.50, the values are:

$$x - h = 0$$
 \rightarrow $f(x - h) = 1.0000000$
 $x = 0.5$ \rightarrow $f(x) = 0.690313$
 $x + h = 1$ \rightarrow $f(x + h) = 0$

 These values can be used to compute the forward, backward and centered difference approximation.

Solution (a):

For h = 0.25,

Forward difference approximation:

$$f'(0.5) \approx \frac{f(x+h)-f(x)}{h} = \frac{0.406943-0.690313}{0.25}$$
$$= -1.133480$$

Backward difference approximation:

$$f'(0.5) \approx \frac{f(x) - f(x - h)}{h} = \frac{0.690313 - 0.870908}{0.25}$$
$$= -0.722380$$

For h = 0.5,

Forward difference approximation:

$$f'(0.5) \approx \frac{f(x+h)-f(x)}{h} = \frac{0-0.690313}{0.5}$$
$$= -1.380626$$

Backward difference approximation:

$$f'(0.5) \approx \frac{f(x) - f(x - h)}{h} = \frac{0.690313 - 1.000000}{0.5}$$
$$= -0.619374$$

Solution (b):

For centered divided difference,

When h = 0.25:

$$f'(0.5) \approx \frac{f(x+h) - f(x-h)}{2h}$$
$$= \frac{0.406943 - 0.870908}{2(0.25)} = -0.927930$$

When h = 0.5:

$$f'(0.5) \approx \frac{f(x+h) - f(x-h)}{2h}$$
$$= \frac{0 - 1.00000}{2(0.5)} = -1.00000$$

Solution (c):(percent relative error)

h	Method	Approximate value	Percent relative error
	Forward	-1.133480	$\frac{ -0.901875 - (-1.133480) }{ -0.901875 } \times 100\% = 25.680388\%$
0.25	Backward	-0.722380	$\frac{ -0.901875 - (-0.722380) }{ -0.901875 } \times 100\% = 19.902426\%$
	Centered	-0.927930	$\frac{ -0.901875 - (-0.927930) }{ -0.901875 } \times 100\% = 2.888981\%$
	Forward	-1.380626	$\frac{ -0.901875 - (-1.380626) }{ -0.901875 } \times 100\% = 53.083964\%$
0.5	Backward	-0.619374	$\frac{ -0.901875 - (-0.619374) }{ -0.901875 } \times 100\% = 31.323742\%$
	Centered	-1.00000	$\frac{ -0.901875 - (-1.000000) }{ -0.901875 } \times 100\% = 10.880111\%$

Lower value of h gives better approximation. From the result above, centered diff. approx. gives the best estimation.

Example 2:

Use high accuracy formula to estimate the first derivative of:

$$f(x) = 0.13x^5 - 0.75x^3 + 0.12x^2 - 0.5x + 1$$

at x = 0.5 and step size of h = 0.25.

Solution:

$$x - 2h = 0$$
 $\rightarrow f(x - 2h) = 1$
 $x - h = 0.25$ $\rightarrow f(x - h) = 0.8709$
 $x = 0.5$ $\rightarrow f(x) = 0.6903$
 $x + h = 0.75$ $\rightarrow f(x + h) = 0.4069$
 $x + 2h = 1$ $\rightarrow f(x + 2h) = 0$

Forward difference approximation, $O(h^2)$

$$f'(0.5) \approx \frac{1}{2h} [4f(x+h) - f(x+2h) - 3f(x)]$$
$$= \frac{1}{2(0.25)} [4(0.4069) - 0 - 3(0.6903)] = -0.8866$$

Solution:

Backward difference approximation, $O(h^2)$

$$f'(0.5) \approx \frac{1}{2h} [3f(x) - 4f(x - h) + f(x - 2h)]$$

$$= \frac{1}{2(0.25)} [3(0.6903) - 4(0.8709) + 1)] = -0.8254$$

Centred difference approximation, $O(h^4)$

$$f'(0.5) \approx \frac{1}{12h} \left[-f(x+2h) + 8f(x+h) - 8f(x-h) + f(x-2h) \right]$$
$$= \frac{1}{12(0.25)} \left[-0 + 8(0.4069) - 8(0.8709) + 1 \right] = -0.904$$

Exercise 6.4

1) Estimate the first derivative of a function

$$f(t) = 3\sin 2t$$

at t = 0.5 with a step size of h = 0.25 using forward and backward difference approximation of O(h) and centred difference approximation of $O(h^2)$.

[Ans: Forward O(h)=1.8724, Backward O(h)=4.3444, Centered $O(h^2)=3.1084$]

2) Use high accuracy formula of $O(h^2)$ and $O(h^4)$ to estimate the first derivative of $f(t) = e^{-\sin t}$

at t = 1 using step size of 0.25.

[Ans: Forward O(h2) =-0.2274; Backward O(h2) =-0.2216; Centered O(h4) =-0.2331]

Exercise 6.4

3) Given the following data

t	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
X	0.231	0.451	0.511	0.623	0.687	0.731	0.882	0.903	0.922	0.987

Find the first derivative using high accuracy formula of $O(h^2)$ and $O(h^4)$ at t=0.6, with h=0.2.

[Ans: Forward $O(h^2) = 1.08$; Backward $O(h^2) = 0.38$; Centered $O(h^4) = 0.71$]

Exercise 6.4:

4) A car traveling along a straight road is clocked at a number of points. The data from the observations are given in the following table, where the time, t is in seconds and the distance x is in feet.

Time, t	0	3	6	9	12
Distance, x	0	225	412	685	946

Estimate the **velocity** of the car when t=6 seconds using high accuracy centered difference approximation. Take h=3.

[Ans: 75.9444ft/s]

Derivation of Formulas:

Second Order FDA:

Cancel out the term of hf'(x) in Equations (2) & (5): Eqn (5) – 2Eqn (2):

$$f(x+2h) - 2f(x+h) = \left[f(x) + 2hf'(x) + 4h^2 \frac{f''(x)}{2!} + 8h^3 \frac{f^{(3)}(x)}{3!} + \cdots \right]$$
$$-2\left[f(x) + f'(x)(h) + \frac{f''(x)}{2!}(h)^2 + \frac{f^{(3)}(x)}{3!}(h)^3 + \cdots \right]$$
$$\therefore f(x+2h) - 2f(x+h) \approx -f(x) + h^2 f''(x)$$
(10)

and hence,

$$f''(x) = \frac{f(x)-2f(x+h)+f(x+2h)}{h^2}$$

Second Order BDA:

Replace h with -h in Eqn (10),

$$f(x-2h) - 2f(x-h) \approx -f(x) + h^2 f''(x)$$

and hence,

$$f''(x) = \frac{f(x-2h)-2f(x-h)+f(x)}{h^2}$$
ocw.utem.edu.mv

UTel

Second Order CDA:

Cancel out the term of hf'(x) in Equations (1) & (2): Eqn (1) + Eqn (2):

$$f(x+h) + f(x-h) = \left[f(x) + f'(x)(h) + h^2 \frac{f''(x)}{2!} + h^3 \frac{f^{(3)}(x)}{3!} + \cdots \right]$$

$$+ \left[f(x) - hf'(x) + h^2 \frac{f''(x)}{2!} - h^3 \frac{f^{(3)}(x)}{3!} + \cdots \right]$$

$$\therefore f(x+h) + f(x-h) \approx 2f(x) + h^2 f''(x)$$

$$(11)$$

and hence,

$$f''(x) = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$$

Second Order HAFDA:

Cancel out the term of hf'(x) in f(x+h), f(x+2h) and f(x+3h)

Second Order HABDA:

Replace h with -h in the equation yield from **Second Order HAFDA**.

Second Order HACDA:

Cancel out the term of hf'(x) in f(x+h), f(x-h), f(x+2h) and f(x-2h)

List of formulas derived in previous slides for the second order of derivatives:

[O(h)]

Forward
D.A.
$$f''(x) = \frac{f(x) - 2f(x+h) + f(x+2h)}{h^2}$$

$$f''(x) = \frac{f(x-2h) - 2f(x-h) + f(x)}{h^2}$$

Backward D.A. [O(h)]

$$f''(x) = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$$

Centered D.A. $[O(h^2)]$

High Accuracy $[O(h^2)]$

Forward D.A.
$$f''(x) = \frac{2f(x) - 5f(x+h) + 4f(x+2h) - f(x+3h)}{h^2}$$

$$f''(x) = \frac{2f(x) - 5f(x - h) + 4f(x - 2h) - f(x - 3h)}{h^2}$$

High Accuracy Backward D.A. $[O(h^2)]$

$$f''(x) = \frac{-f(x+2h) + 16f(x+h) - 30f(x) + 16f(x-h) - f(x-2h)}{12h^2}$$

High Accuracy Centered Difference $[O(h^4)]$

Example 1:

Use centered difference approximation to estimate the second derivative of:

$$f(x) = 0.13x^5 - 0.75x^3 + 0.12x^2 - 0.5x + 1$$

at x = 0.5 and step size of h = 0.25. Next, find the true value and the percent relative error.

Solution:

$$x - h = 0.25 \qquad \longrightarrow \qquad f(x - h) = 0.8709$$

$$x = 0.5 \qquad \longrightarrow \qquad f(x) = 0.6903$$

$$x + h = 0.75 \qquad \longrightarrow \qquad f(x + h) = 0.4069$$

$$f''(x) \approx \frac{1}{h^2} [f(x + h) - 2f(x) + f(x - h)]$$

$$f''(0.5) = \frac{1}{0.25^2} [0.4069 - 2(0.6903) + 0.8709]$$

$$= -1.6448$$

$$f'(x) = 0.65x^4 - 2.25x^2 + 0.24x - 0.5$$

$$f''(x) = 2.6x^3 - 4.5x + 0.24$$

$$f'(0.5) = -1.685$$
Percentage of relative error = $\frac{|-1.685 - (-1.6448)|}{|-1.685|} \times 100\% = 2.39\%$

Example 2:

Given the following data

t	1	2	3	4	5	6	7
f(t)	-1.8	-3.8	4.2	34.2	103	232.2	448.2

Calculate f''(4) with step size of 1 by using forward and backward difference approximation of O(h) and centered difference approximation of $O(h^2)$.

Solution:

$$t - 2h = 2$$
 \longrightarrow $f(t - 2h) = -3.8$
 $t - h = 3$ \longrightarrow $f(t - h) = 4.2$
 $t = 4$ \longrightarrow $f(t) = 34.2$
 $t + h = 5$ \longrightarrow $f(t + h) = 103$
 $t + 2h = 6$ \longrightarrow $f(t + 2h) = 232.2$

• Forward difference approximation, O(h)

$$f'' \approx \frac{1}{h^2} [f(t) - 2f(t+h) + f(t+2h)]$$
$$f''(4) = \frac{1}{1^2} [34.2 - 2(103) + 232.2] = 60.4$$

Solution (cont.):

• Backward difference approximation, O(h)

$$f''(t) \approx \frac{1}{h^2} [f(t-2h) - 2f(t-h) + f(t)]$$
$$f''(4) = \frac{1}{1^2} [-3.8 - 2(4.2) + 34.2] = 22$$

• Centered difference approximation, $O(h^2)$

$$f''(t) \approx \frac{1}{h^2} [f(t+h) - 2f(t) + f(t-h)]$$
$$f''(4) \approx \frac{1}{1^2} [103 - 2(34.2) + 4.2] = 38.8$$

Example 3:

Use high accuracy difference approximation to estimate the second derivative of:

$$f(t) = 4e^{\sin 2t} - 1$$

at t = 0.5 and step size of h = 0.1.

Solution:

Compute the needed values of f(t):

t	0.2	0.3	0.4	0.5	0.6	0.7	0.8
f(t)	4.9045	6.0353	7.1960	8.2791	9.1587	9.7161	9.8685

Solution (cont.):

• Forward difference, $O(h^2)$

$$f''(t) \approx \frac{1}{h^2} \left[-f(t+3h) + 4f(t+2h) - 5f(t+h) + 2f(t) \right]$$

$$f''(0.5) = -23.9665$$

• Backward difference, $O(h^2)$

$$f''(t) \approx \frac{1}{h^2} [2f(t) - 5f(t - h) + 4f(t - 2h) - f(t - 3h)]$$

$$f''(0.5) = -18.5345$$

• Centered difference, $O(h^4)$

$$f''(t) \approx \frac{1}{12h^2} \left[-f(t+2h) + 16f(t+h) - 30f(t) + 16f(t-h) - f(t-2h) \right]$$

$$f''(0.5) = -20.4027$$

Exercise 6.5:

1) Given a function

$$f(t) = 2e^{\cos 3t}.$$

Use forward and backward difference approximation of O(h) and centered difference approximation of $O(h^2)$ to approximate f''(0.7) with step size of 0.1. Suppose the true value is 13.5807. Calculate the percent relative error for each method.

[Ans: Forward=10.36, ε = 23.72%; Backward=16.68, ε =22.82%; Centered=13.58, ε =0.0052%]

Exercise 6.5:

2) Given that

χ	1.6	1.7	1.8	1.9	2.0	2.1	2.2	2.3
f(x)	24.5325	29.9641	36.5982	44.7012	54.5982	66.6863	81.4509	99.4843

Use the high accuracy forward and backward difference approximation of $O(h^2)$ and centered difference approximations of $O(h^4)$ of the second derivatives formula to estimate f''(2.0) using h = 0.1.

[Ans: Forward=208.42; Backward=211.91; Centered=218.3742]

Exercise 6.5:

3) A spring with spring constant k N/m is attached to a m kg mass with friction constant b Ns/m is forced to the right by an external force and the motion of the spring is governed by

$$F(t) = m\frac{d^2y}{dt^2} + b\frac{dy}{dt} + ky$$

Given that the spring constant k=4 N/m, the mass m=1 kg and friction constant b=4 Ns/m, estimate the external force, F(t) for each of the time recorded as in Table by using appropriate 3-points difference formula.

t	0	0.5	1.0	1.5
у	2	2.5	3.6	5.2

Ans of Question 3: *F(t) may have different possible values and it depends on the chosen method/combination in obtaining $\frac{dy}{dt}$ and $\frac{d^2y}{dt^2}$. Give only 1 answer for each of the t value.

t	0	0.5	1.0	1.5
у	2	2.5	3.6	5.2
First order numerical diff.	FDA	FDA or CDA	CDA or BDA	BDA
$\frac{dy}{dt}$	0.4	1.7 or 1.6	2.7 or 2.8	3.7
Second order numerical diff.	FDA	FDA or CDA	CDA or BDA	BDA
$\frac{d^2y}{dt^2}$	2.4	2 or 2.4	2 or 2.4	2
F(t)	12	18.8 or 18.4 or 19.2	27.2 or 27.6 or 28	37.6