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Lesson Outcomes

Upon completion of this lesson, students should be able to:
« solve heat equation on the heated rod problems.

* solve wave equation on the vibrating spring problems.
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5.3 Applications of PDE
5.3.1 The Heat Equation

In this section, we will study the heat flow problem in a long uniform rod. In
general, this problem depends on the initial distribution of temperature and
the physical properties of rod. The physical properties of rod refers to the
thermal diffusivity of the material where it measures the rate of transfer of

heat of the material from the hot end to the cold end.

By using the method of separation of variables, the solution function u(x,t)
that represents temperature at a point x along the rod at time t can be

determined.
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Heat Conduction

A uniform homogeneous rod or metal bar is made up of infinite numbers of
molecules that are interconnected by cohesive force. When heat is applied to
one end of rod, the heat tends to transfer due to heat flows from molecule to

molecule. Heat moves rapidly in a substance with high thermal diffusivity.

In the following section, the heat transfer of the heated rod with zero
temperature at the endpoints will be discussed. Graphical interpretation will

be illustrated in the next slide.
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Graphical Interpretation

Given a rod with length L with the setup and condition as shown in Figure 5.1,
we aim to find the temperature of the rod at position point x after some time t.

Boundary condition: Boundary condition:
u(0,¢) =0 —>_)<——— u(L,t) =0
Always zero X Always zero
temperature 0 Length of rod temperature
at this end point [nitial condition: at this end point
u(x, 0) = f(x)

At t = 0, temperature of rod
at position x is set up as f(x)

Figure 5.1: Graphical interpretation of experimental setup for heat conduction

5
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For heat equation, the function u(x, t) represents temperature at a point

x along the rod at time t.

For example:

u(0,5) = 10 means at the time t = 5, the temperature at the point x = 0
is 10°C. (The unit of measurements of length and time depend on the

unit of measurement of thermal diffusivity)
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Theorem: The heated rod with zero temperature at the endpoints
The partial differential equation
U =kuy, , 0<x<L, t>0
for a rod of length L and thermal diffusivity of k, with boundary conditions
u(0,t) =u(L,t) =0, t>0
and initial condition
u(x,0)=f(x), 0<x<L

has the series solution

2 NIx _ n?m?kt
u(x, t) = Z b,, sin (T) e L? (5.1)
n=1

where b, is the Fourier series coefficients obtained by

2 (L /nux
b, = —j f(x) sin (—) dx, n=123,.. (5.2)
LJ, L
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5.3.1 The Heat Equation

Example 5.13:

Solve the following PDE for the heat transfer of a metal bar with zero

temperature at both ends by method of separation of variables:

ut=%uxx , 0<x<2m, t>0.

u(0,t) = u2m,t) = 0; u(x,0) = x(2mr — x)

Next, by using the first three non-zero terms of the series, compute the
temperature of the metal bar at the point x = r when t = 1.

(Give your answer correct to 4 decimal places)
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Solution:
Let u(x,t) = X(x)T(t), the heat equation becomes

XT' =< X"T (5.3)

Separate the variables, we have
X . oT/

T = =D (5.4)
where constant p is known as separation constant.
From Egn. (5.4),

%=p and 9—=p (5.5)

Hence X and T must satisfy

X"—pX=0and T'—-pT =0 (5.6)
Since u(x,t) = X(x)T(t) and T(t) # 0, the boundary conditions become
u(0,t) = X(0)T(t) = 0 = X(0) = 0 (5.7)
u2m,t) = XQm)T(t) =0=>X(2n) =0 °

@@®06] Now, we need to consider three possible cases for p.
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Case (1):p = 0.
From Eqgn (5.6), (substitute p = 0 into X" — pX = 0)

X"=0

X' =A

~“X(x)=Ax+B (5.8)
By substituting boundary conditions (5.7) into Eqgn. (5.8),
X(0) =0, X(0)=A4(0)+B X(2n) =0, X(2n) = AQ2n) + B
~B=0 0=AQ2mn)+0

A=0
From Eqn. (5.8), we found that X (x) = 0 and this implies
ulx,t) = X)T(t) = 0.
This case gives a trivial solution. Hence, we omit this case.

10
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Case (2): p > 0.

Let p = 22 and A1 > 0. Substitute p = 12 into Eqn. (5.6) leads to ODE
X"—2°X=0

Characteristic equation:

m?—-22=0

m=+A
~ X(x) = Ae? + Be ™ (5.9)
X(0) =0, X(0) = 4e*® + Be=*(®) X(2m) =0, 0 = Ae?™ + Be~2m4
~0=A+B 0 = —Be?™ 4 Be~2m
A=-B 0 = B(—e?™ + e2m4)

Since —e?™ 4+ ¢72™ £ 0, B = 0 and then 4 = 0. From Eqgn. (5.9),
Xx)=0 = ul,t)=Xx)T)=0

This case gives a trivial solution. Hence, we omit this case.
11
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Case (3): p < 0.

Let p = —2% and 1 > 0. Substitute p = —12 into Eqn (5.6) leads to ODE
X"+ 22X = 0and T'+¢A2T =0

Characteristic equation:

m2+22=0 = m=+Ai

. X(x) = AcosAx + Bsin Ax (5.10)
X(0) =0, X(0) =Acos0+ Bsin0, X(2m) =0, X(2r) = Acos2nA+ Bsin2nA
~0=A4 0 = Bsin2nA
, B #0,.sin2nA =0

Givensinnt =0,n = 1,2,3, ...
So, sin 2nA = 0 implies 2nA = nn

r 2nA =nm, n=1,2,3, ...
A, = g, n=123.. (511)

~ X,(x) = B, sinA,x
= B, sin%, n=123,.. (5.12)
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1
T'4+=2°T =0

9
ar _ _ 1,2
dt 9’1T

[=dT = [—Z22dt

1
InT = —=At+k

9
From Eqn.7(15.11), T = e_%,lek

A, =— ) Let C = ek
T2 \ _ Ce—%/lzt

2

RV L,
T,(t) = C,e 9" = C,e 36, n=1273,.. (5.13)
Hence,
Un(x,t) = Xp(x) T, (¢)

n2

. . nx ——t
= (Bn sin 7) Ch,e 3s

" Let D,, = B,,C, "
= Dn(sin%)e_ﬁt, n=123,.. (5.14)
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If uy, u,,..., Uy, are linearly independent
solutions to a PDE, then the linear combination
of all uy,u,,..., uy, are also a solution to the PDE

By applying superposition principle on Eqgn. (5.14),

n2

u(x,t) = Z Dn(sm—)e_%t (5.15)
Apply initial condition, u(x,0) = x(2m — x), on Eqgn. (5.15),
- nx
x(2m —x) = D, sin7 (5.16)
n=1
Recall from Fourier Sine Series:
- nmwx
f(x) = B Sil’lT

n=1
where

f f(x) sm@ dx 14




OPENCOURSEWARE

ocw.utem.edu.my

From Eqn (5.16), by half-range expansion for f(x) on 0 < x < 2m,

(x) sm@ dx
f
Tabular Method:

x(2m — x) sin7 dx - Integrate

:%O

2 nx
+ 2TTx — X Sin
1 [ 2Q2nx —x?) nx 2
=—|- COS— B T
s n 2 21 — 2x ——cos—
42r—2x) nx 16 nx 2m \ n
+ Sin— — —Cos— +
n? 2 nd 2], ——zsm?
1 16 16 n
=—|| ——5cosnnm —— _ 0 5 o
T n3 n3 — cos—
(-1)™ n 2
16
v /O‘z’v”f]
ndm
= - [1= (-D"

n3n ”
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By substituting D,, into Eqn. (5.15), the temperature function is given by

u(x,t) = Z D (sm—)e_BZ

- 16 . onx_ _1n%,
= Y o[- (~D"(sin e 58
=l
32 i 1 ( nx) _g_zt
= — —3 Sin—)eé
" noddn
Finally,
32 1 nm
— (1)
u(m, 1) =— z = (sm—)e 3%
nodd

32 1 T _(;)62 1 37 (3)62 1/ ©5n _%
13 (smz)e 33 sm2 e +¥ 51n7 e + .-

~ % (0.9726 — 0.0288 + 0.004 ...)

16

~ 9.6542°C
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Example 5.14:

Solve the following heat equation by using method of separation of
variables:
U =4u,, , 0<x<m t>0.
u(0,t) = u(m,t) = 0; u(x,0) = 2sin3x

17
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Solution:
Let u(x,t) = X(x)T(t), the heat equation becomes

XT' =4X"T

Separate the variables, we have
Xn . Tr

x ar P
where constant p is known as separation constant.
From Eqgn. (5.18),

—p and — =
x P ar P

Hence X and T must satisfy
X'"—pX=0and T'—4pT =0

(5.17)

(5.18)

(5.19)

(5.20)

Since u(x,t) = X(x)T(t) and T(t) + 0, the boundary conditions become

u(0,t) =X0)T(t)=0=X0)=0
u(m,t) =X@T(t)=0=>X(mr) =0

Now, we need to consider three possible cases for p.

(5.21)

18
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Case (1):p = 0.
From Eqgn (5.20), (substitute p = 0 into X" — pX = 0)

X"=0

X' =A

~“X(x)=Ax+B (5.22)
By substituting boundary conditions from Eqn. (5.21) into Egn. (5.22),
X(0) =0, X(0)=A4(0)+B X(m) =0, X(n) = A(n) + B
~B=0 0=A(n) + 0

A=0
From Eqn. (5.22), we found that X (x) = 0 and this implies
ulx,t) = X)T(t) = 0.
This case gives a trivial solution. Hence, we omit this case.

19
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Case (2): p > 0.

Let p = 22 and A1 > 0. Substitute p = 12 into Eqn (5.20) leads to ODE
X"—2°X=0

Characteristic equation:

m?—-22=0

m=+A
~ X(@) = Ae™ + Be~* (5.23)
X(0) =0, X(0) = Ae*® 4 Be=HO) X(m) =0, 0=Ae™ 4+ Be ™
~0=A+8B 0 = —Be™ 4+ Be~TA
A=-B 0 = B(_en/'l + e—n')l)

Since —e™ + e™™ % 0, B = 0 and then 4 = 0. From Eqn. (5.23),
Xx)=0 = ul,t)=Xx)T)=0

This case gives a trivial solution. Hence, we omit this case.
20



OPENCOURSEWARE

ocw.utem.edu.my

Case (3): p < 0.
Let p = —1%2 and A > 0. Substitute p = —22 into Eqn (5.20) leads to ODE
X"+ 2°X =0and T' +42°T =0

Characteristic equation:

m2+212=0 = m==A

~ X(x) = AcosAx + B sin Ax (5.24)
X(0) =0, X(0) =Acos0+ Bsin0, X(m)=0, X(m) =AcosnwAd+ BsinnA

~0=A 0 = BsinmA

B+#0, . ~sintA=0

Given sinnt =0,n = 1,2,3, ...
So, sinmAd = 0 implies A = nw

r ntA=nm, n=123,...
A, =n, n=123,.. (525

~ X, (x) = B, sinA,x
= B,sinnx, n=1273,.. (5.26)

21
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T' + 4)°T = 0
T

— = —4)%T
dt

JldT—] 422 dt
~dT =

InT = —42%t + k

From Eqgn. (5.25),

An=m T = e therk ) Let C = ek
— Ce— 41t
T, (t) = Cpe Mt = C et =123, .. (5.27)
Hence,
Un (x, t) = X (x) T, (¢)
= (B, sinnx)Ce 4"t
= D, (sin nx)e“mzt, n=123, ) Let Dn = ByCr (5.28)

22
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If uy, u,,..., Uy, are linearly independent
solutions to a PDE, then the linear combination
of all uy,u,,..., uy, are also a solution to the PDE

By applying superposition principle on Eqgn. (5.28),

u(x, t) = z D, (sinnx)e™ 47t (5.29)
n=1
Apply initial condition, u(x,0) = 2 sin 3x, on Eqgn. (5.29),
2sin3x = z D,, sin nx (5.30)
n=1
Recall from Fourier Sine Series:
¢ nrmx
f(x) = B, sinT
n=1
where
B—ZL()'med 23
n=7 i f(x) sin [ ax
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From Eqgn. (5.30), the half-range expansion for f(x) on0 < x < m s

D_Z L()_nnxd
n—LofxsmL X

2 (™ 1
= E] 2sin3x sinnx dx ¢msm= sin AsinB = 5 [cos(A — B) — cos(A + B)]
0

2 A
= E] cos(3x —nx) — cos(3x + nx) dx
0

, n+3

sin(3 —n)x  sin(3 4+ n)x]"
3—n 3+n

0

(sinG-mr_ sin@G+mm 3 5.31
< P e >_( — )], n # (5.31)

, n+3

24
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From Eqgn. (5.31),

_2sin(3—n)m sin(3+m)mw 3
" 3—n 3+n |’ "
When n = 3,
D 2 I sin(3mr —nm) sinén
3T nl—rg 3—n 6 )

2 [ - —mcos(3m — nm) ]

= —|lim -0
T | n—>3 —1
2

==(m)
[

D3=2

Apply
L'Hopital’s Rule

25
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Alternative Way to find D,, for this question:
From Eqgn. (5.30),

2sin3x = z D, sinnx

n=1
By expanding the summation,
2sin3x = D;sinx + D, sin2x + D3 sin 3x + D, sin4x + ---
By comparing coefficients of both sides,

D3=2andD1=D2=D4:"':0

Hence, the only possible D,, for u(x,t) is D; when n = 3.

By substituting D,, into Eqgn. (5.29), the temperature function is given by

(00]
u(x,t) = Z D, (sinnx)e™ 4"t
n=1

= D3(sin 3x)e™ 36t

= 2e 36t sin 3x 26
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Exercise 5.8:

1) Solve the following heat equation by method of separation of variables.
Sur =uy, , 0<x<10, t>0.
u(0,t) = u(10,t) = 0; u(x,0) = sinmx

[Ans: (sin nx)e_nTZt]
2) Suppose that a rod of length 30 (cm) with kK = 0.09cm?/s is heated and
its initial temperature is u(x,0) = 30. At time t = 0, its lateral surface is
insulated and its two ends are imbedded in ice at 0°C (u(0,t) = u(L,t) =
0). By method of separation of variables, calculate the rod’s temperature

at its midpoint after 20 minutes for the following case.

[Ans: ©(15,1200) = 11.6859°C]

27
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5.3.2 The Wave Equation

The wave equation usually describes mechanical waves, such as water
wave, sound wave and seismic waves. Its application can be found in
electromagnetics, fluid dynamics and acoustics.

Consider a string, stretched between two fixed points, is being initially
plucked to the form of f(x) to start vibrate and the string moves in a
direction perpendicular to the x-axis as shown in Figure 5.2. The vertical

displacement of a point at x at time t is represented by u(x, t).

u(x,0) = f(x)

-

‘- AN » X
0 X L
28
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Theorem: The vibrating string with an initial velocity
The partial differential equation
Use = C%Uyy , 0<x<L, t>0

where c is the physical constant (a ratio of string’s tension to its density) with
boundary conditions

u(0,t) =u(L,t) =0, t>0
and initial conditions
ulx,0) = f(x), u(x,0)=gkx), 0<x<L
has the series solution

(0]

u(x,t) = z {an cos (mzct) + b, sin (mzct)} sin (nl,ﬂ) (5.32)

n=1

where a,, and b,, are the Fourier series coefficients obtained by

2 (k . /nmx
a, = Zfo f(x)sin (T) dx, n=12,73,.. (5.33)
A /nmx :
b, = p i g(x) sin (T) dx, n=123,..
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Example 5.15:

Solve the following wave equation by using the method of separation of

variables.
U = 44Uy, , 0<x<2m t>0.
u(0,t) =u2m,t) =0; u(x,0)=3sinx, us(x,0) = 1.

Next, by using the first three non-zero terms of the series, find the

displacement of spring at the point x = mr at t = 10.

30
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Solution:
Let u(x, t) = X(x)T(t), the wave equation becomes

XT" =4X"T

Separate the variables, we have
Xn . Trr

x ar P
where constant p is known as separation constant.
From Eqn. (5.35),

XH_ and TII_
x P ar P

Hence X and T must satisfy
X'"—pX=0and T" —4pT =0

(5.34)

(5.35)

(5.36)

(5.37)

Since u(x,t) = X(x)T(t) and T(t) + 0, the boundary conditions become

u(0,t) =X0)T(t)=0=X0)=0
um,t) =XQ2m)T(t) =0=>X2n) =0

Now, we need to consider three possible cases for p.

(5.38)

31
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Case (1):p = 0.
From Eqgn (5.37), (substitute p = 0 into X" — pX = 0)

X"=0

X' =A

~X(x)=Ax+B (5.39)
By substituting boundary conditions (5.38) into Eqgn. (5.39),
X(0) =0, X(0)=A4(0)+B X(2n) =0, X(2n) = AQ2n) + B
~B=0 0=AQ2mn)+0

A=0
From Eqn. (5.39), we found that X (x) = 0 and this implies
ulx,t) = X(x)T() = 0.
This case gives a trivial solution. Hence, we omit this case.

32
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Case (2): p > 0.

Let p = 22 and A1 > 0. Substitute p = 12 into Eqn (5.37) leads to ODE
X"—2°X=0

Characteristic equation:

m?—-22=0

m=+A
~ X(x) = Ae? + Be ™ (5.40)
X(0) =0, X(0) = A4e*® + Be=4(®) X(2m) =0, 0 = Ae?™ + Be~2™
~0=A+B 0 = —Be?™ 4 Be~2m
A=-B 0 = B(—e?™ + e2m4)

Since —e?™ 4 ¢72™ £ 0, B = 0 and then A = 0. From Eqgn. (5.40),
Xx)=0 = ul,t)=Xx)T)=0

This case gives a trivial solution. Hence, we omit this case.
33
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Case (3): p < 0.

Let p = —2% and 1 > 0. From Eqn (5.37), it leads to ODE
X'"+22X=0 and T"+42°T=0

Characteristic equation for X" + 12X = 0:

m24+212=0 = m==+A

. X(x) = AcosAx + B sin Ax (5.41)
X(0) =0, X(0) =Acos0+ Bsin0, X(2m) =0, X(2m) = Acos2nAd+ B sin2mwA
~0=A 0 = Bsin2nA
| B #0,.sin2nA =0

Given sinnt =0,n = 1,2,3, ...
So, sin 2nA = 0 implies 2nA = nn

r 2nA =nm, n=1,2,3, ...
In=7,n=123. (542

~ X, (x) = B, sinA,x
=B, sin%, n=1273.. (9,43)
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Characteristic equation for T"' + 4A%T = 0:
m? + 41> =0
m = 12
=~ T(t) = C cos2At + D sin 24t

Since A, =~ from Eqn. (5.42),

~ T,(t) = C, cosnt + D, sinnt, n=123,..

Hence,
un(x: t) = Xn(x)Tn(t)

nx
(B sin ) (C,, cosnt + D,, sinnt)

nx
= (E, cosnt + E, sinnt) sin7, n=123..

By superposition principle:

nx

u(x, t) = Z(E cosnt + E, sinnt) sin— 7

n=1

(5.44)

Let E,, = B,,C,,
and F, = B, D,

(5.45)

(5.46)

35
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Apply initial condition u(x, 0) = 3 sin x to the Eqn. (5.46)
. - . nx
3sinx = E, sm7 (5.47)

n=1

By applying Fourier Sine series to Eqn. (5.47):

nmx

j f(x) sm— dx

2 2T

1
3 sin x sinnz—x dx ®=| sinAsinB = 5 [cos(A — B) — cos(A + B)]

3 (%7 2—n 2+n
=E coS > X — COS > x| dx
0

3[ 2 (2-n 2 (2+n\ |7 ,
_an_nsm > X 2+nsm > x| n #

0

= % Kﬁ sin(2 —n)m — ﬁsin(Z + n)n) — 0], n# 2 (5.48)

=0, n+*2

36
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From Eqgn. (5.48),

3 2 2
[2 sin(2 — n)mw — g nsm(Z + n)n] , n+2

"= orl2—n
When n = 2,
£ 3 I sin(2 —n)r  sindn
2|2 2-n 4 Apply
L'Hopital’s Rule

3 [  —mcos(2—n)m ]

= —|lim -0
T | n-2 —1
3

= —(m)
is

E2=3

37
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Alternative Way to find E,, for this question:
From Eqn. (5.47),

_ . nx
3sinx = E, sm7

n=1

By expanding the summation,

X 3x
3sinx = E; sinz + E,sinx + E3 sin7 + E,sin2x + ---

By comparing coefficients of both sides,

E2=38ndE1=E3=E4=-~=0

Hence, the only possible E,, for u(x, t) is E, when n = 2.

38
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Differentiate Eqn. (5.46) with respect to ¢,

oo

nx
u(x, t) = z (—nE, sinnt + nF, cosnt) sin > (5.49)

n=1

Apply initial velocity, u;(x,0) = 1 into Eqn. (5.49):

Z nk, sm—
n=1

By applying Fourier sine series:

2 (b nix 2T
nk, = I f(x)sm—dx——j sm—dx
=1[_2c057
[
2

=—[—cosnmt + 1] = 2 [1-(-D"]
nm nmn

2
cFo=——[1- (D", n=123,. (550)
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Finally, substitute E,, and E, into Eqgn. (5.46),

oo

nx
u(x,t) = Z (E, cosnt + F, sinnt) sin7

n=1
nx nx
= Z (E,, cosnt) sin - + Z (F, sinnt) sin7

nx

= E, cos 2t sinx + z [— [1- (- 1)"]] (sinnt) sin— >

nx
= 3 cos2tsinx + — Z — (sinnt) sin—-

2
nodd
Next,

4 - 1 nm
u(m,10) = 3 cos20sinm + — Z — (sin 10n) sin—-
T n 2
nodd
12 2 32 2 52 2
~ —0.5663

40

4 (1 T 1 3 1 5
—0+ —sin 10 sin— 4+ —sin 30 sin— + —sin 50 sin —
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Example 5.16:

A string is stretched between two points and plucked at t = 0 as follows:

Length in meter

If the string is being released initially with zero velocity, apply the wave
equation

to determine the subsequent motion of a point P with distance x from the

origin at time t.
41
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Solution:

From the figure, we need to find the f(x) for the intervals of 0 < x < 2 and
2<x<4.

For the interval 0 < x < 2, the line between (0,0) and (2,0.01) is

Y1~ Yo
Y — Yo =x1_x0(x—xo)

0.01 -0
y—0=——5"(x-0)

y = 0.005x
For the interval 2 < x < 4, the line between (2,0.01) and (4,0) is

0—0.01

y—0=—7—-Gx-4

y = 0.02 — 0.005x
Hence,
£x) = 0.005x, 0<x<?2
~10.02—-0.005x, 2<x<4

42
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The string is being released initially with zero velocity,
us(x,0) =0
Hence, the model of the wave equation is as follow:
Uy = 100w, , 0<x<4, t>0.
u(0,t) =u(4,t) =0, u:(x,0) =0,

_n_f 0005x, 0<x<2
w0 =10 = {0.02 ~0.005x, 2<x<4 (5.51)

Apply the method of separation of variables:
Let u(x,t) = X(x)T(t), the wave equation becomes
XT" =100X"T (5.52)

Separate the variables, we have
XII 3 TII B
X 100T

p 43
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Hence X and T must satisfy
X'"—pX=0and T" —100pT =0 (5.53)

Since u(x,t) = X(x)T(t) and T(t) + 0, the boundary conditions become
u(0,t) =X0)T(t)=0=>X(0)=0
u(4,t) =X4)Tt)=0=>X4)=0

Now, we need to consider three possible cases for p.

The first two cases are similar to the previous example where they
produce ftrivial solution. | leave it to you to work out the first two cases.

We will move to the third case directly.

44
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Case (3): p < 0.

Let p = —2% and A1 > 0. Substitute p = —22 into Eqn (5.53) leads to ODE
X"+22X=0 and T"+100A°T =0

Characteristic equation for X"' + 12X = 0:

m24+212=0 = m==+A

s X(x) = AcosAx + B sin Ax (5.54)
X(0) =0, X(0) =Acos0+ Bsin0, X(4) =0, X(4) =Acos4Ad+ Bsin4A
~0=A 0 = Bsin4A
, B #0,.sin41 =20

Given sinnt =0,n = 1,2,3, ...
So, sin41 = 0 implies 41 = nn

r 42 =nn, n=1,2,3, ...

__nm

Iy="",n=123,. (5.55)

~ X, (x) = B, sinA,x

=B, sin%, n=123,.. (54.556)
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Characteristic equation for T"' + 100A*T = 0:
m? + 1001 = 0
m = £10Ai
=~ T(t) = Ccos10At + D sin 104t

Since 1, = % from Eqn. (5.55),

Snmt ~ bnmt
~ T, (t) = C,, cos > + D,, sin > n=1223,.. (5.57)
Hence,
u,(x,t) = X,,(x)T,,(t)
(B _ mtx) <C Snit D s 5nnt>
= sin— cos sin
T4 " 2 " 2 Let E,, = B, C,

sin—
4

( Snit 5nnt> nimx and F, = B, D,
= | E,, cos

+ F, sin

2 2

(5.58)
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By superposition principle:

- Snmt Snmt
u(x,t) = Z (En COS il + F, sin o )sinﬂ (5.59)
2 2 4
n=1
y B B 0.005x, 0<x<2
Apply initial condition u(x,0) = f(x) = {0.02 —0.005x, 2<x<4 to the Eqn.
(5.59),
- . NmX
fx)= ) Epsin—— (5.60)

n=1

47
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By applying Fourier Sine series to Eqgn. (5.60):
nmx

E, = jf(x)sm—dx

. nnx 4 . nmx
= — j 0.005x sin—— dx + j (0.02 — 0.005x) sin—— dx
41J, 4 9 4
Tabular Method: Tabular Method:
—m Integrate | Diff._|Integrate
0.005x sin % +  0.02-0.005x "X
4 4
— 0.005 4 nix — —0.005 4 nix
— —C0S—— ——cos
nm 4 nm 4
+ 0 16  nnx + 0 16  nnx
B T I

1| 002x nmx 008  nmx|’

E, =—|— CcoS + sin
noo2 nm 4  n22 4

4(0.005x — 0.02) nmx 0.08 nax
+ - COS 1 n2q2 smT
48
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4(0.005x — 0.02) nmx 0.08 nax
cos — sin

nm 4 n2m? 4

_|_

CoS + Sin
nmn 4 n2mn? 4

]

[ 0.02x ntx 0.08 nmx|?
0

1] 0.04 nt 0.08 nm 0.04 nt 008 nm
=§ — ——CO0S + sin +{1{0—| ———cos sin

nm 2  n?mp? 2 nm 2 n2p? 2
1[0.16 nm
~ 2|22 ¥
B 0.08 nm

= sin
n2m? 2

49
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Differentiate Eqn. (5.59) with respect to t,

oo

Snm ~ Snnt  5Snm Snmt\ = nmx
us(x,t) = Z ———E, sin + E, cos sin —

2 2 2 2 4

n=1

Apply initial velocity, u;(x,0) = 0 into Eqn. (5.61):

(0]

0— 5n7TF sin nmx
= 2 " 4
By applying Fourier sine series:
5nm 2t  nmx
TFn =7 ) f(x) sin—— dx
2 (4  nmx
= Zjo (0) sin—— dx

(5.61)
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Finally, substitute E,, and E, into Eqgn. (5.59),

- Snmt ~ Snmt\ @ nmx
u(x,t)=z E, cos > + F, sin 5| sin——

n=1

_i 0.08 nm Snmt\ = nmx
= nzﬂzsm > CoS > sin 2

n=1
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Exercise 5.9:

1) Solve the following wave equation by using method of separation of
variables:

U = Uy , 0<x<m, t>0.
u(0,t) =u(m,t) =0; u(x,0)=4sinx —3sin2x; u;(x,0)=0.5.

. . 2 1, . .
[Ans: u(x,t) = 4 cost sinx — 3 cos 2t sin 2x + ;Z,‘fodd = (sinnt) sin nx]

2) A stretched string of length 20cm is set oscillating by displacing its
midpoint a distance 1cm from its rest position and releasing it with
zero initial velocity. Solve the wave equation u;; = u,, to determine
the resulting motion, u(x, t).

[Ans: u(x,t) = %Z,‘f:l% (sin %) (cos n—nt) sin ——

o
20 207
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Thank You

Questions & Answer?
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