ENGINEERING MATHEMATICS 1 BMFG 1313
 COMPLEX NUMBER
 - Loci in the Complex Plane
 - Function of a Complex Variable

Irma Wani Jamaludin ${ }^{1}$, Ser Lee Loh ${ }^{2}$
${ }^{1}$ irma@utem.edu.my, ${ }^{2}$ slloh@utem.edu.my

Learning Outcomes

Upon completion of this lesson, the student should be able to:

1. Use complex numbers to represent a locus of points in the Argand diagram.
2. Apply transformations from the z-plane to the w-plane.

4.3 Loci in the Complex Plane

A locus (plural loci) is a set of points where their locations satisfy one or more specified properties.

Example:

1. A circle is the locus of a set of points in a plane where they all have a fixed distance (its radius) from a fixed point (its centre).
2. A straight line is also can be described by the locus.

The properties may be defined in sentences or algebraically.

4.3.1 Straight lines

A straight line can be presented in the form of complex numbers in many ways.

We will illustrate straight lines with few examples.

Example:

Describe and sketch the locus of z given that
(a) $\operatorname{Re}(z)=4$
(b) $\operatorname{Re}(z)=-3$

4.3.1 Straight lines

Solution:

(a) $\operatorname{For} \operatorname{Re}(z)=4$, we will have $z=4+\mathrm{j} b$ for any real b. Thus the locus is the vertical straight line and the equation is given by $x=4$.

4.3.1 Straight lines

Solution:

(b) For $\operatorname{Re}(z)=-3$, we will have $z=-3+\mathrm{j} b$ for any real b. Thus the locus is the vertical straight line on the left side and the equation is given by $x=-3$.

4.3.1 Straight lines

Example:

Describe the locus of z given by

$$
\left|\frac{z-\mathrm{j} 2}{z+1}\right|=1
$$

4.3.1 Straight lines

Solution:

From $\left|\frac{z-\mathrm{j} 2}{z+1}\right|=1$, we have $|z-\mathrm{j} 2|=|z+1|$.
We know that $z=x+\mathrm{j} y$, thus

$$
|x+\mathrm{j} y-\mathrm{j} 2|=|x+\mathrm{j} y+1|
$$

Using the definition of modulus, we can rewrite as

$$
\begin{gathered}
\sqrt{x^{2}+(y-2)^{2}}=\sqrt{(x+1)^{2}+y^{2}} \\
x^{2}+y^{2}-4 y+4=x^{2}+2 x+1+y^{2} \\
4 y+2 x-3=0 \\
y=-\frac{1}{2} x+\frac{3}{4}
\end{gathered}
$$

This equation describes a straight line with negative slope.

The locus of z is the perpendicular bisector of the line segment joining the points $(0,2)$ and $(-1,0)$

4.3.1 Straight lines

Example:

If $|z|=|z-j 4|$,
(a) sketch the locus of $Q(x, y)$ which represented by z on an Argand diagram
(b) Find the Cartesian equation of this locus by using an algebraic method.

4.3.1 Straight lines

Solution:

(a) $|z|$ represents the distance from the origin $(0,0)$ to Q.
$|z-\mathrm{j} 4|$ represents the distance from the point $(0,4)$ to Q.
As $|z|=|z-j 4|$, then Q is the locus of points which have the same distance between the points $(0,0)$ and $(0,4)$.
Thus the locus of Q is the perpendicular bisector of the line joining the points $(0,0)$ and $(0,4)$. The equation is given by $y=2$.

4.3.1 Straight lines

Solution:

(b) $|z|=|z-\mathrm{j} 4|$

Let $z=x+\mathrm{j} y$. Thus we have

$$
\begin{gathered}
|x+\mathrm{j} y|=|x+\mathrm{j} y-\mathrm{j} 4| \\
\sqrt{x^{2}+y^{2}}=\sqrt{x^{2}+(y-4)^{2}} \\
x^{2}+y^{2}=x^{2}+y^{2}-8 y+16 \\
8 y=16
\end{gathered}
$$

Thus, the Cartesian equation of the locus Q is $y=2$.

4.3.1 Straight lines

Example:

Given $\arg (z-2)=\frac{\pi}{3}$. Sketch the locus of P represented by z on an Argand diagram. Then, find the Cartesian equation of the locus using the algebraic method.

4.3.1 Straight lines

Solution:

From $\arg (z-2)=\frac{\pi}{3}$, we have $z=2$ and this is a point at $(2,0)$ in Argand diagram. Thus The locus of P is referred to as a half-line positive slope from (2,0) making an angle of $\frac{\pi}{3}$ in an anti-clockwise sense.

4.3.1 Straight lines

To find the Cartesian equation,

$$
\begin{aligned}
& \arg (z-2)=\frac{\pi}{3} \\
& \arg (x+j y-2)=\frac{\pi}{3} \\
& \quad \frac{y}{x-2}=\tan \left(\frac{\pi}{3}\right)=\sqrt{3} \\
& y=\sqrt{3}(x-2)
\end{aligned}
$$

Thus, the Cartesian equation of the locus P is

$$
y=\sqrt{3} x-2 \sqrt{3}
$$

Exercise 4.3

1. Describe the locus of z given by
(a) $\operatorname{Re}(z)=-1$
(b) $|z|=|z-\mathrm{j} 6|$
2. Sketch the locus of z and give the Cartesian equation of the locus of z for:
(a) $\frac{|z+3|}{|z-5|}=1$
(b) $|z-\mathrm{j} 3|=|z+2|$
(c) $|z-3|=|z+j|$

Exercise 4.3

3. If $\arg (z+3+j 2)=\frac{3 \pi}{4}$, sketch the locus on an Argand diagram. Find the Cartesian equation of this locus.

$$
\begin{aligned}
& \text { [Ans: Straight line vertically at } x=-1 \text {, Straight line horizontally at } y=3 ; \\
& \qquad x=1, y=-\frac{2}{3} x+\frac{5}{6}, y=-3 x+4 ;
\end{aligned}
$$

half-line from $(-3,-2)$ making an angle of $\frac{3 \pi}{4}$ in an anti-clockwise sense from a line in the same direction as the positive x-axis, $y=-x-5$]

4.3.2 Circles

The locus of points which satisfy $|z|=r$ is given as a circle where the centre is at the origin with radius r. This can be proven as below:

Suppose $z=x+\mathrm{j} y$. Thus $|x+\mathrm{j} y|=\sqrt{x^{2}+y^{2}}=r$.
Squaring both sides we will have

$$
x^{2}+y^{2}=r^{2} .
$$

This is the equation of a circle which the centre is at the origin with radius r.

4.3.2 Circles

A circle on the Argand diagram reflects that $\left|z-z_{1}\right|$ is the distance between the point $z=x+\mathrm{j} y$ and the point $z_{1}=a+\mathrm{j} b$. Hence a circle of radius R, centred at (a, b) is written as:

$$
\left|z-z_{1}\right|=R
$$

4.3.2 Circles

Example:

Given $|z-5-j 2|=2$.
(a) Sketch the locus of $P(x, y)$ which is represented by z on an Argand diagram.
(b) Find the Cartesian equation of this locus by using an algebraic method.

4.3.2 Circles

Solution:

(a) From $|z-5-j 2|=2$, we can rewrite
as $|z-(5+j 2)|=2$ and this represents the distance between the fixed point $A(5,2)$ and the variable point $P(x, y)$ where the distance is always equal to 2 .

4.3.2 Circles

Solution:

(b) By substituting $z=x+\mathrm{j} y$ we have

$$
\begin{gathered}
|z-5-\mathrm{j} 2|=2 \\
|x+\mathrm{j} y-5-\mathrm{j} 2|=2
\end{gathered}
$$

Applying the definition of modulus, we then have

$$
\sqrt{(x-5)^{2}+(y-2)^{2}}=2
$$

Squaring both sides to get

$$
(x-5)^{2}+(y-2)^{2}=4
$$

Hence, the equation is given as

$$
\begin{gathered}
x^{2}-10 x+25+y^{2}-4 y+4=4 \\
x^{2}+y^{2}-10 x-4 y+25=0
\end{gathered}
$$

4.3.2 Circles

Example:

Find the Cartesian equation of the circle

$$
|z-(1+\mathrm{j} 2)|=2
$$

Solution:

By substituting $z=x+\mathrm{j} y$ we have $|x+\mathrm{j} y-1-\mathrm{j} 2|=2$.
Applying the definition of modulus, we then have

$$
\sqrt{(x-1)^{2}+(y-2)^{2}}=2
$$

Squaring both sides of the equation and hence the equation is given as

$$
\begin{gathered}
x^{2}-2 x+1+y^{2}-4 y+4=4 \\
x^{2}+y^{2}-2 x-4 y+1=0
\end{gathered}
$$

Exercise 4.4:

Give a geometrical interpretation of the locus of points z represented by:

1. $|z-j|=2$
2. $|z-j 4|=2$
3. $|z-2-j 3|=5$
4. $|2-\mathrm{j} 5-z|=3$
[Ans: Circle centered at $(0,1)$ with radius 2 ; Circle centered at $(0,4)$ with radius 2 ; Circle centered at $(2,3)$ with radius 5 ; Circle centered at $(2,-5)$ with radius 3]

4.4 Functions of Complex Number

A complex-valued function f of the complex variable z is a kind of mapping of each complex number z in a set D to one and only one complex number w.

We write $w=f(z)$ which means w is the image of z under the function f. Thus, the set D is known as the domain of f while the set of all images is known as the range of f.

As discussed before, z can be expressed by $z=x+\mathrm{j} y$. Hence we write $f(z)=$ $w=u+\mathrm{j} v$, where u and v are the real and imaginary parts of w, respectively. Therefore we will have

$$
w=f(z)=f(x, y)=f(x+\mathrm{j} y)=u+\mathrm{j} v
$$

4.4 Functions of Complex Number

Since u and v depend on x and y, respectively, we can write them as:

$$
u=u(x, y) \text { and } v=v(x, y)
$$

Combining these ideas, we will have a complex-valued function f in the form

$$
f(z)=f(x+\mathrm{j} y)=u(x, y)+\mathrm{j} v(x, y)
$$

4.4 Functions of Complex Number

Example:

Write $f(z)=z^{2}$ in the form $f(z)=u(x, y)+\mathrm{j} v(x, y)$.

Solution:

$$
\begin{aligned}
f(z) & =z^{2}=(x+\mathrm{j} y)^{2} \\
& =x^{2}+2 \mathrm{j} x y-y^{2} \\
& =\left(x^{2}-y^{2}\right)+\mathrm{j} 2 x y
\end{aligned}
$$

4.4 Functions of Complex Number

Example:

Express u and v in terms of x and y where

$$
w=u+\mathrm{j} v, z=x+\mathrm{j} y, w=f(z) \text { and } f(z)=\frac{z-\mathrm{j} 2}{z+1}, z \neq-1
$$

4.4 Functions of Complex Number

Solution:

$$
\begin{aligned}
f(z) & =\frac{z-\mathrm{j} 2}{z+1}=\frac{x+\mathrm{j} y-\mathrm{j} 2}{x+\mathrm{j} y+1} \\
& =\frac{x+\mathrm{j}(y-2)}{(x+1)+\mathrm{j} y} \times \frac{(x+1)-\mathrm{j} y}{(x+1)-\mathrm{j} y} \\
& =\frac{x(x+1)-\mathrm{j} x y+\mathrm{j}(y-2)(x+1)+y(y-2)}{(x+1)^{2}+y^{2}}
\end{aligned}
$$

Thus, we have

$$
u=\frac{x(x+1)+y(y-2)}{(x+1)^{2}+y^{2}} \quad \text { and } \quad v=\frac{y-2 x-2}{(x+1)^{2}+y^{2}}
$$

4.4 Functions of Complex Number

Example:

Express the function

$$
f(z)=\bar{z} \operatorname{Re}(z)+z^{2}+\operatorname{Im}(z)
$$

in the form $f(z)=u(x, y)+\mathrm{j} v(x, y)$.

4.4 Functions of Complex Number

Solution:

Using the properties of complex numbers, the function becomes

$$
\begin{aligned}
f(z) & =\bar{z} \operatorname{Re}(z)+z^{2}+\operatorname{Im}(z) \\
& =(x-\mathrm{j} y) x+(x+\mathrm{j} y)^{2}+y \\
& =x^{2}-\mathrm{j} x y+x^{2}+\mathrm{j} 2 x y-y^{2}+y \\
& =\left(2 x^{2}-y^{2}+y\right)+\mathrm{j} x y
\end{aligned}
$$

Exercise 4.5:

1. Express u and v in terms of x and y where

$$
w=u+\mathrm{j} v, z=x+\mathrm{j} y, w=f(z) \text { and } f(z)=\bar{z}^{2} .
$$

2. Express $f(z)=\frac{z+2-\mathrm{j}}{z-1+\mathrm{j}}$ in the form of $u+\mathrm{j} v$.
3. Express $f(z)=\bar{z}^{2}+(2-\mathrm{j} 3) z$ in the form of $u+\mathrm{j} v$.

$$
\begin{array}{r}
\text { [Ans: } u=x^{2}-y^{2}, v=-2 x y ; \\
f(z)=\frac{x^{2}+y^{2}+x-3}{x^{2}+y^{2}-2 x+2 y+2}+\mathrm{j} \frac{-2 x-3 y-1}{x^{2}+y^{2}-2 x+2 y+2^{2}} ; \\
\left.f(z)=\left(x^{2}-y^{2}+2 x+3 y\right)+\mathrm{j}(2 y-3 x-2 x y)\right]
\end{array}
$$

References

Glyn James, Modern Engineering Mathematics Fourth Edition, Pearson Prentice Hall, 2008.

John H. Mathews \& Russell W. Howell, Complex Analysis for Mathematics and Engineering, Jones and Bartlett Publishers, 2001.

