ENGINEERING MATHEMATICS 1 BMFG 1313 MATRICES

Ser Lee Loh ${ }^{1}$, Irma Wani Jamaludin ${ }^{2}$
${ }^{1}$ slloh@utem.edu.my, ${ }^{2}$ irma@utem.edu.my

Lesson Outcome

Upon completion of this lesson, the student should be able to:

1. Apply basic operations of a matrix.
2. Compute determinant of a matrix.
3. Compute inverse matrix

1.1 Introduction

WHY WE NEED MATRICES?

In general, matrices are used as a notation that represents simplified form of a linear system problem

1.1 Introduction

A matrix with m rows and n columns has entries $a_{i j}, i=1,2, \ldots m, j=1,2, \ldots, n$ as follows:

$$
\boldsymbol{A}=\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \cdots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \cdots & a_{2 n} \\
a_{31} & a_{32} & a_{33} & \cdots & a_{3 n} \\
\vdots & \vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & a_{m 3} & \cdots & a_{m n}
\end{array}\right] \underset{m \times n}{ } \text { Order of matrix }
$$

When

- $m=n$: Square matrix of order n
- $n=1$: Column Vector, i.e. $\boldsymbol{B}=\left[\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{m}\end{array}\right]$
- $m=1$: Row vector, i.e. $\boldsymbol{C}=\left[\begin{array}{llll}c_{1} & c_{2} & \cdots & c_{n}\end{array}\right]$

1.1 Introduction

Symmetric matrix:

An $\mathrm{n} \times \mathrm{n}$ matrix \boldsymbol{A} is a symmetric matrix if $\boldsymbol{A}^{\mathrm{T}}=\boldsymbol{A}$, i.e. $a_{i j}=a_{j i}$

$$
\text { e.g. } \quad A=\left[\begin{array}{ccc}
1 & -3 & 5 \\
-3 & 2 & 7 \\
5 & 7 & 0
\end{array}\right]
$$

Skew-symmetric or antisymmetric matrix:
An $\mathrm{n} \times \mathrm{n}$ matrix \boldsymbol{A} is known as antisymmetric matrix if $\boldsymbol{A}^{\mathrm{T}}=-\boldsymbol{A}$, i.e.
$a_{i j}=-a_{j i}$

$$
\text { e.g. } \quad A=\left[\begin{array}{ccc}
0 & -4 & 6 \\
4 & 0 & -7 \\
-6 & 7 & 0
\end{array}\right]
$$

1.1 Introduction

Diagonal matrix:

the entries other than main diagonal are all zeros

$$
\text { e.g. } \boldsymbol{B}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 4
\end{array}\right] \text { and } \boldsymbol{C}=\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right]
$$

Identity matrix:
the entries are all zeros except $a_{i i}=1, i=1,2, \ldots n$

$$
\text { e.g. } \boldsymbol{I}_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \text { and } \boldsymbol{I}_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

1.2 Basic Operation on Vectors and Matrices

a) Equality

Two matrices are equal if and only if all their elements are the same including their order.

$$
A=B
$$

b) Addition and Subtraction

$\boldsymbol{A}+\boldsymbol{B}$ and $\boldsymbol{A}-\boldsymbol{B}$ are defined only when \boldsymbol{A} and \boldsymbol{B} are the same order.
$\boldsymbol{A}+\boldsymbol{B}$ has elements $a_{i j}+b_{i j}$ and $\boldsymbol{A}-\boldsymbol{B}$ has elements $a_{i j}-b_{i j}$.
e.g.

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
3 & -5 & 4 \\
-1 & 6 & 0
\end{array}\right]+\left[\begin{array}{ccc}
2 & 3 & -4 \\
0 & 5 & 1
\end{array}\right]=\left[\begin{array}{cc}
3+2 & -5+3 \\
-1+0 & 6+5
\end{array} \begin{array}{c}
4+(-4) \\
0+1
\end{array}\right]=\left[\begin{array}{ccc}
5 & -2 & 0 \\
-1 & 11 & 1
\end{array}\right]} \\
& {\left[\begin{array}{cc}
5 & -1 \\
4 & 6 \\
2 & 3
\end{array}\right]-\left[\begin{array}{cc}
2 & -4 \\
3 & 7 \\
-7 & 8
\end{array}\right]=\left[\begin{array}{cc}
5-2 & -1-(-4) \\
4-3 & 6-7 \\
-(-7) & 3-8
\end{array}\right]=\left[\begin{array}{cc}
3 & 3 \\
1 & -1 \\
9 & -5
\end{array}\right]}
\end{aligned}
$$

1.2 Basic Operation on Vectors and Matrices

c) Multiplication by a scalar

Scalar c is multiplied to each of the elements of matrix.
e.g.

$$
\begin{gathered}
3\left[\begin{array}{lll}
-3 & 2 & 6
\end{array}\right]=\left[\begin{array}{lll}
3(-3) & 3(2) & 3(6)
\end{array}\right]=\left[\begin{array}{lll}
-9 & 6 & 18
\end{array}\right] \\
-2\left[\begin{array}{ccc}
0 & 3 & -1 \\
-4 & 2 & 6 \\
5 & -3 & 7
\end{array}\right]=\left[\begin{array}{ccc}
-2(0) & -2(3) & -2(-1) \\
-2(-4) & -2(2) & -2(6) \\
-2(5) & -2(-3) & -2(7)
\end{array}\right]=\left[\begin{array}{ccc}
0 & -6 & 2 \\
8 & -4 & -12 \\
-10 & 6 & -14
\end{array}\right]
\end{gathered}
$$

1.2 Basic Operation on Vectors and Matrices

d) Properties of the transpose matrix
i) $\left(\boldsymbol{A}^{\mathrm{T}}\right)^{\mathrm{T}}=\boldsymbol{A}$
ii) $(\boldsymbol{A}+\boldsymbol{B})^{\mathrm{T}}=\boldsymbol{A}^{\mathrm{T}}+\boldsymbol{B}^{\mathrm{T}}$

For example:

$$
\left(\boldsymbol{A}^{\mathrm{T}}+\boldsymbol{A}\right)^{\mathrm{T}}=\left(\boldsymbol{A}^{\mathrm{T}}\right)^{\mathrm{T}}+\boldsymbol{A}^{\mathrm{T}}=\boldsymbol{A}+\boldsymbol{A}^{\mathrm{T}}
$$

and this shows $\boldsymbol{A}^{\mathrm{T}}+\boldsymbol{A}$ must be a symmetric matrix.

1.2 Basic Operation on Vectors and Matrices

e) Basic Rules of Addition

If matrices $\boldsymbol{A}, \boldsymbol{B}$ and \boldsymbol{C} have the same order:
$\boldsymbol{A}+\boldsymbol{B}=\boldsymbol{B}+\boldsymbol{A}$ (Commutative law)
$(\boldsymbol{A}+\boldsymbol{B})+\boldsymbol{C}=\boldsymbol{A}+(\boldsymbol{B}+\boldsymbol{C})($ Associative law $)$
$r(\boldsymbol{A}+\boldsymbol{B})=r \boldsymbol{A}+r \boldsymbol{B}$ (Distributive law)

1.2 Basic Operation on Vectors and Matrices

Exercise 1.1:

Let $\boldsymbol{A}=\left[\begin{array}{ccc}2 & -1 & 3 \\ 7 & 5 & 0 \\ -2 & 8 & 1\end{array}\right], \boldsymbol{B}=\left[\begin{array}{ccc}1 & 0 & 5 \\ -2 & 4 & 6 \\ 3 & 7 & -2\end{array}\right], \boldsymbol{C}=\left[\begin{array}{ccc}4 & 3 & 0 \\ -3 & 6 & -6\end{array}\right], \boldsymbol{D}=\left[\begin{array}{cc}5 & 3 \\ 7 & -2 \\ 1 & 0\end{array}\right]$
Find

1) $\boldsymbol{A}^{\mathrm{T}}+2 \boldsymbol{B}$
2) $B-5 C$
3) $6\left(D^{T}\right)-2 C$

$$
\text { [Ans: }\left[\begin{array}{ccc}
4 & 7 & 8 \\
-5 & 13 & 20 \\
9 & 14 & -3
\end{array}\right] ; \text { undefined; }\left[\begin{array}{ccc}
22 & 36 & 6 \\
24 & -24 & 12
\end{array}\right]
$$

1.3 Properties of Matrix Multiplication

Matrix multiplication:
Given matrix \boldsymbol{A} with order $p \times q$ and matrix \boldsymbol{B} with order $q \times r$, product of $\boldsymbol{A B}=\boldsymbol{C}$ has an order of $p \times r$.
e.g.

$$
\text { Given } \boldsymbol{A}_{2 \times 3} \text { and } \boldsymbol{B}_{3 \times 5}
$$

The order of matrix $\boldsymbol{C}=\boldsymbol{A} \boldsymbol{B}$ is 2×5, but $B A$ is undefined.

1.3 Properties of Matrix Multiplication

Matrix multiplication:
To multiply two matrices, take the row of the first matrix multiply to the column of the second matrix.
i.e. row $_{1} \times$ column $_{2}$ gives the value of a_{12}

For example:

$$
\begin{gathered}
{\left[\begin{array}{lll}
\left.1 \begin{array}{lll}
1 & 3 & 2
\end{array}\right]\left[\begin{array}{cc}
3 & 0 \\
4 & -1 \\
1 & 2
\end{array}\right] \\
\underbrace{1 \times\left[\begin{array}{l}
3
\end{array}\right)}_{1 \times 2} \\
=[1(3)+3(4)+2(1) & 1(0)+3(-1)+2(2)]=\left[\begin{array}{ll}
17 & 1
\end{array}\right]
\end{array}\right] \begin{array}{ll}
\text { ocw.utem.edu.my }
\end{array}}
\end{gathered}
$$

1.3 Properties of Matrix Multiplication

Matrix multiplication: For example:

$=\left[\begin{array}{ccc}2(3)+3(4)+(-1)(1) & 2(0)+3(-1)+(-1)(2) & 2(8)+3(2)+(-1)(-3) \\ 0(3)+5(4)+2(1) & 0(0)+5(-1)+2(2) & 0(8)+5(2)+2(-3) \\ -1(3)+6(4)+4(1) & -1(0)+6(-1)+4(2) & -1(8)+6(2)+4(-3)\end{array}\right]$
$=\left[\begin{array}{ccc}17 & -5 & 25 \\ 22 & -1 & 4 \\ 25 & 2 & -8\end{array}\right]$

1.3 Properties of Matrix Multiplication

Some Properties:

Let $A \in M_{m \times n}$, let B and C have orders for which the indicated sums and products are defined.

- $\boldsymbol{A}(\boldsymbol{B C})=(\boldsymbol{A B}) \boldsymbol{C} \quad$ (associative law of multiplication)
- $\boldsymbol{A}(\boldsymbol{B}+\boldsymbol{C})=\boldsymbol{A B}+\boldsymbol{A C} \quad$ (left distributive law)
- $(\boldsymbol{B}+\boldsymbol{C}) \boldsymbol{A}=\boldsymbol{B} \boldsymbol{A}+\boldsymbol{C} \boldsymbol{A} \quad$ (right distributive law)
- $r(\boldsymbol{A B})=(r \boldsymbol{A}) \boldsymbol{B}=\boldsymbol{A}(r \boldsymbol{B})$ for any scalar r
- $\boldsymbol{I}_{m} \boldsymbol{A}=\boldsymbol{A}=\boldsymbol{A} \boldsymbol{I}_{n}$
(identity for matrix multiplication)
- $(\boldsymbol{A B C})^{\mathrm{T}}=\boldsymbol{C}^{\mathrm{T}} \boldsymbol{B}^{\mathrm{T}} \boldsymbol{A}^{\mathrm{T}} \quad$ (Transpose of a product)
- $\boldsymbol{A}^{k}=\boldsymbol{A} \ldots \boldsymbol{A}$ for k times (Power of a matrix)

Warnings:

- $\boldsymbol{A B} \neq \boldsymbol{B A}$
- The cancellation laws do not hold for matrix multiplication.
i.e., If $\boldsymbol{A B}=\boldsymbol{A C}, \boldsymbol{B} \neq \boldsymbol{C}$ in general.
- If $\boldsymbol{A B}=\mathbf{0}_{m \times n}$, we cannot conclude either $\boldsymbol{A}=\mathbf{0}$ or $\boldsymbol{B}=\mathbf{0}$.

1.3 Properties of Matrix Multiplication

Exercise 1.2:

Given $\boldsymbol{A}=\left[\begin{array}{ccc}2 & -1 & 3 \\ 7 & 5 & 0 \\ -2 & 8 & 1\end{array}\right], \boldsymbol{B}=\left[\begin{array}{ccc}1 & 0 & 5 \\ -2 & 4 & 6 \\ 3 & 7 & -2\end{array}\right], \boldsymbol{C}=\left[\begin{array}{ccc}2 & -1 & 0 \\ 1 & 2 & -6 \\ 3 & 0 & 5\end{array}\right]$,
Find

1) $3 B C$
2) $(A B)^{\mathrm{T}}+2 \boldsymbol{C}$
3) Verify Associative law of multiplication

$$
\text { [Ans: }\left[\begin{array}{ccc}
51 & -3 & 75 \\
54 & 30 & 18 \\
21 & 33 & -156
\end{array}\right] ;\left[\begin{array}{ccc}
17 & -5 & -15 \\
19 & 24 & 27 \\
4 & 65 & 46
\end{array}\right] \text {] }
$$

1.4 Determinants

Computation of determinant, Method 1:
For a matrix with order 2×2,
i.e. $\quad\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=a d-b c$

For a matrix with order 3×3,
i.e. $\quad\left|\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right|=(a e i+b f g+c d h)-(c e g+b d i+a f h)$

1.4 Determinants

Method 2:

Determinant of an $n \times n$ matrix \boldsymbol{A} is denoted by $|\boldsymbol{A}|$ and it is computed by Cofactors Expansion along a row:

$$
|\boldsymbol{A}|=\sum_{j=1}^{n}(-1)^{i+j} a_{i j} \boldsymbol{M}_{i j}
$$

or Cofactors Expansion along a column:

$$
|\boldsymbol{A}|=\sum_{i=1}^{n}(-1)^{i+j} a_{i j} \boldsymbol{M}_{i j}
$$

where $a_{i j}$ is the entry of matrix \boldsymbol{A} and
$\boldsymbol{M}_{i j}$ is known as minor.

1.4 Determinants

Minor of a matrix, $\boldsymbol{M}_{i j}$:
Minor, $\boldsymbol{M}_{i j}$, of an $n \times n$ matrix \boldsymbol{A} is the determinant of $(n-1) \times(n-1)$ matrix formed from \boldsymbol{A} by deleting the row and column that contains $a_{i j}$.

Example:

Given $\boldsymbol{A}=\left[\begin{array}{ccc}2 & -1 & 3 \\ 6 & 5 & 8 \\ -4 & 7 & 1\end{array}\right]$, find the minor \boldsymbol{M}_{32}.

Solution:

Delete the row and column that contains $a_{32}=7$:

$$
\boldsymbol{A}=\left[\begin{array}{ccc}
2 & -1 & 3 \\
6 & 5 & 8 \\
-4 & 0 & 1
\end{array}\right]
$$

$$
M_{32}=\left|\begin{array}{ll}
2 & 3 \\
6 & 8
\end{array}\right|=16-18=-2
$$

1.4 Determinants

The sign associated with the minor is given as follows:

$$
\boldsymbol{A}=\left[\begin{array}{ccccc}
+ & - & + & - & \cdots \\
- & + & - & + & \cdots \\
+ & - & + & - & \cdots \\
- & + & - & + & \cdots \\
\vdots & \vdots & \vdots & \vdots &
\end{array}\right]<\begin{array}{|c}
\begin{array}{c}
\text { Alternating signs } \\
\text { start with "+" at } \\
a_{11}
\end{array} \\
\square
\end{array}
$$

A minor multiplied by the appropriate sign is known as cofactor, $\boldsymbol{A}_{i j}$.
So, $\boldsymbol{A}_{i j}=(-1)^{i+j} \boldsymbol{M}_{i j}$
e.g. Given $A=\left[\begin{array}{ccc}2 & -1 & 3 \\ 6 & 5 & 8 \\ -4 & 7 & 1\end{array}\right]$,

$$
\begin{aligned}
\boldsymbol{A}_{21} & =(-1)\left|\begin{array}{cc}
-1 & 3 \\
7 & 1
\end{array}\right|=22 \\
\boldsymbol{A}_{13} & =(+1)\left|\begin{array}{cc}
6 & 5 \\
-4 & 7
\end{array}\right|=62
\end{aligned}
$$

1.4 Determinants

Example:

Find the determinant of matrix $\boldsymbol{A}=\left[\begin{array}{ccc}2 & -1 & 3 \\ 7 & 5 & 0 \\ -2 & 8 & 1\end{array}\right]$.

$$
\begin{gathered}
\left.|\boldsymbol{A}|=\sum_{j=1}^{n}(-1)^{i+j}\right] \\
a_{i j}
\end{gathered} \left\lvert\, \begin{array}{cc}
\left.\boldsymbol{M}_{i j}\right] \\
A & =\left[\begin{array}{lll}
+ & - & + \\
- & + & - \\
+ & - & +
\end{array}\right]
\end{array}\right.
$$

Solution:

Cofactor expansion across the first row ($i=1$):

$$
\begin{aligned}
|A| & =(+1)(2)\left(\begin{array}{ll}
5 & 0 \\
8 & 1
\end{array}|+(-1)(-1)| \begin{array}{cc}
7 & 0 \\
-2 & 1
\end{array}\right]+(+1)(3) \\
& =2(5)+1(7)+3(66) \\
& =215
\end{aligned}
$$

Cofactor expansion across the second column ($j=2$):

$$
\begin{aligned}
|\boldsymbol{A}| & =-(-1)\left|\begin{array}{cc}
7 & 0 \\
-2 & 1
\end{array}\right|+5\left|\begin{array}{cc}
2 & 3 \\
-2 & 1
\end{array}\right|-8\left|\begin{array}{ll}
2 & 3 \\
7 & 0
\end{array}\right| \\
& =1(7)+5(8)-8(-21) \\
& =215 \text { (same answer) }
\end{aligned}
$$

1.4 Determinants

Properties of determinants: (Method 3)
Theorem 1:
If \boldsymbol{A} is a triangular matrix, then $|\boldsymbol{A}|=a_{11} a_{22} a_{33} \ldots a_{n n}$.
e.g.

$$
\begin{aligned}
& \left|\begin{array}{llll}
1 & 2 & 0 & 1 \\
0 & 3 & 1 & 1 \\
0 & 0 & 2 & 3 \\
0 & 0 & 0 & 1
\end{array}\right|=(1)(3)(2)(1)=6 \\
& \text { Upper triangular } \\
& \left|\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & -1 & 0 & 0 \\
1 & 3 & 2 & 0 \\
2 & 1 & 1 & 4
\end{array}\right|=(1)(-1)(2)(4)=-8 \\
& \text { Lower triangular }
\end{aligned}
$$

1.4 Determinants

Properties of determinants:
Theorem 2:
Let A be a square matrix.
a) If a multiple of one row of \boldsymbol{A} is added to another row to produce a matrix \boldsymbol{B}, then $|\boldsymbol{B}|=|\boldsymbol{A}|$.
e.g. $\left|\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right|_{-2 r_{1}+r_{2}}=\left|\begin{array}{cc}1 & 2 \\ 0 & -1\end{array}\right|$
b) If two rows of \boldsymbol{A} are interchanged to produce \boldsymbol{B}, then $|\boldsymbol{B}|=-|\boldsymbol{A}|$.
e.g. $\left|\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 2 & 3 & 0\end{array}\right|_{r_{1} \leftrightarrow r_{2}}=-\left|\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 2 \\ 2 & 3 & 0\end{array}\right|$
c) If one row of \boldsymbol{A} multiplied by k to produce \boldsymbol{B}, then $|\boldsymbol{B}|=k|\boldsymbol{A}|$.
e.g. $\left|\begin{array}{ll}5 & 2 \\ 3 & 6\end{array}\right|=3\left|\begin{array}{ll}5 & 2 \\ 1 & 2\end{array}\right|, \quad\left|\begin{array}{cc}2 & 12 \\ 4 & 3\end{array}\right|=2\left|\begin{array}{ll}1 & 6 \\ 4 & 3\end{array}\right|=(2)(3)\left|\begin{array}{ll}1 & 2 \\ 4 & 1\end{array}\right|$

1.4 Determinants

Properties of determinants:

Theorem 3:

If A is an $n \times n$ matrix, $\left|\boldsymbol{A}^{\mathrm{T}}\right|=|\boldsymbol{A}|$.

$$
\text { e.g. }\left|\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right|=\left|\begin{array}{lll}
1 & 4 & 7 \\
2 & 5 & 8 \\
3 & 6 & 9
\end{array}\right|
$$

Theorem 4:

If two rows (columns) of \boldsymbol{A} are equal, then $|\boldsymbol{A}|=0$.

1.4 Determinants

Properties of determinants:

Theorem 5:
If a row (column) of \boldsymbol{A} consists entirely of zeroes, then $|\boldsymbol{A}|=0$.

$$
\text { e.g. } \quad\left|\begin{array}{llll}
1 & 0 & 1 & 5 \\
4 & 0 & 2 & 2 \\
1 & 0 & 1 & 1 \\
1 & 0 & 3 & 4
\end{array}\right|=0, \quad\left|\begin{array}{ccc}
1 & 2 & 5 \\
4 & -2 & 7 \\
0 & 0 & 0
\end{array}\right|=0
$$

Theorem 6:

- If \boldsymbol{A} and \boldsymbol{B} are $n \times n$ matrices, $|\boldsymbol{A B}|=|\boldsymbol{A}||\boldsymbol{B}|$.
- If \boldsymbol{A} is an $n \times n$ matrix, then \boldsymbol{A} is invertible or nonsingular matrix iff $|\boldsymbol{A}| \neq 0$.
- $|\boldsymbol{A}+\boldsymbol{B}| \neq|\boldsymbol{A}|+|\boldsymbol{B}|$ in general.

1.4 Determinants

Exercise 1.3:

Evaluate the following determinants:

1) $\left|\begin{array}{ccc}5 & 2 & 0 \\ 0 & -2 & 5 \\ 0 & 0 & 4\end{array}\right|$
2) $\left|\begin{array}{llll}4 & 2 & 2 & 0 \\ 2 & 0 & 0 & 0 \\ 3 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right|$
3) $\left|\begin{array}{cccc}1 & -3 & 1 & -2 \\ 2 & -5 & -1 & -2 \\ 0 & -4 & 5 & 1 \\ -3 & 10 & -6 & 8\end{array}\right|$ by using cofactor expansion across third column.

1.4 Determinants

Exercise 1.3:

Evaluate the following determinants:
4) Given $\left|\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right|=7$, find
a) $\left|\begin{array}{ccc}a & b & c \\ 3 d & 3 e & 3 f \\ g & h & i\end{array}\right|$
b) $\left|\begin{array}{ccc}a+d & b+e & c+f \\ d & e & f \\ g & h & i\end{array}\right|$
5) $\left|\begin{array}{ccc}1 & 3 & 2 \\ -2 & 3 & -4 \\ 5 & 5 & 6\end{array}\right|$

1.5 Inverse of a Matrix

Given a matrix \boldsymbol{A},
if $\boldsymbol{B} \boldsymbol{A}=\boldsymbol{A B}=\boldsymbol{I}$, it means that \boldsymbol{B} is the inverse of \boldsymbol{A} and hence,

$$
B=A^{-1}
$$

To compute an inverse from a matrix,

$$
\boldsymbol{A}^{-1}=\frac{1}{|\boldsymbol{A}|} \text { adj } \boldsymbol{A}
$$

where $|\boldsymbol{A}| \neq 0$ (\boldsymbol{A} is a nonsingular matrix) and adj \boldsymbol{A} is an adjoint matrix of \boldsymbol{A} formed by transpose matrix which consists of cofactors of each of the elements in \boldsymbol{A}.

1.5 Inverse of a Matrix

Example:

Given $\boldsymbol{A}=\left[\begin{array}{ccc}3 & -2 & 1 \\ 5 & 6 & 2 \\ 1 & 0 & -3\end{array}\right]$, find the inverse matrix of \boldsymbol{A}.

Solution:

Step 1: Find the determinant of matrix

$$
\begin{aligned}
& \left|\begin{array}{ccc}
3 & -2 & 1 \\
5 & 6 & 2 \\
1 & 0 & -3
\end{array}\right|=[3(6)(-3)+(-2)(2)(1)+5(0)(1)] \\
& -[1(6)(1)+5(-2)(-3)+3(2)(0)] \\
& =-94
\end{aligned}
$$

1.5 Inverse of a Matrix

Solution:

Step 2: Find adj A, which is the transpose of cofactor matrix

$$
\begin{gathered}
\text { adj } \mathbf{A}=\left[\begin{array}{ccc}
+\left|\begin{array}{cc}
6 & 2 \\
0 & -3
\end{array}\right| & -\left|\begin{array}{cc}
5 & 2 \\
1 & -3
\end{array}\right| & +\left|\begin{array}{cc}
5 & 6 \\
1 & 0
\end{array}\right| \\
-\left|\begin{array}{cc}
-2 & 1 \\
0 & -3
\end{array}\right| & +\left|\begin{array}{cc}
3 & 1 \\
1 & -3
\end{array}\right| & -\left|\begin{array}{cc}
3 & -2 \\
1 & 0
\end{array}\right| \\
+\left|\begin{array}{cc}
-2 & 1 \\
6 & 2
\end{array}\right| & -\left|\begin{array}{cc}
3 & 1 \\
5 & 2
\end{array}\right| & +\left|\begin{array}{cc}
3 & -2 \\
5 & 6
\end{array}\right|
\end{array}\right]^{T} \\
=\left[\begin{array}{ccc}
+(-18) & -(-17) & +(-6) \\
-(6) & +(-10) & -(2) \\
+(-10) & -(1) & +(28)
\end{array}\right]^{T}=\left[\begin{array}{ccc}
-18 & 17 & -6 \\
-6 & -10 & -2 \\
-10 & -1 & 28
\end{array}\right]^{T}=\left[\begin{array}{ccc}
-18 & -6 & -10 \\
17 & -10 & -1 \\
-6 & -2 & 28
\end{array}\right]
\end{gathered}
$$

1.5 Inverse of a Matrix

Solution:

Step 3: Find inverse matrix $\boldsymbol{A}^{-1}=\frac{1}{|A|}$ adj \boldsymbol{A}

$$
\boldsymbol{A}^{-1}=\frac{1}{-94}\left[\begin{array}{ccc}
-18 & -6 & -10 \\
17 & -10 & -1 \\
-6 & -2 & 28
\end{array}\right]=\left[\begin{array}{ccc}
\frac{9}{47} & \frac{3}{47} & \frac{5}{47} \\
-\frac{17}{94} & \frac{5}{47} & \frac{1}{94} \\
\frac{3}{47} & \frac{1}{47} & -\frac{14}{47}
\end{array}\right]
$$

1.5 Inverse of a Matrix

Exercise 1.4:

Find the inverse of the following matrices:

1) $\boldsymbol{A}=\left[\begin{array}{cc}2 & 4 \\ 5 & 10\end{array}\right]$
2) $\boldsymbol{B}=\left[\begin{array}{cc}-1 & 2 \\ 3 & 5\end{array}\right]$
3) $\boldsymbol{C}=\left[\begin{array}{ccc}2 & 1 & 3 \\ 1 & -1 & 1 \\ 1 & 4 & -2\end{array}\right]$
4) $\boldsymbol{D}=\left[\begin{array}{ccc}5 & 0 & 3 \\ 6 & 4 & -2 \\ 1 & 0 & -3\end{array}\right]$

$$
\text { [Ans: no inverse; }\left[\begin{array}{cc}
-5 / 11 & 2 / 11 \\
3 / 11 & 1 / 11
\end{array}\right] ;\left[\begin{array}{ccc}
-1 / 7 & 1 & 2 / 7 \\
3 / 14 & -1 / 2 & 1 / 14 \\
5 / 14 & -1 / 2 & -3 / 14
\end{array}\right] ;\left[\begin{array}{ccc}
1 / 6 & 0 & 1 / 6 \\
-2 / 9 & 1 / 4 & -7 / 18 \\
1 / 18 & 0 & -5 / 18
\end{array}\right] \text {] }
$$

