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Lesson Outcome

Upon completion of this lesson, the student should be 
able to:

1. Apply basic operations of a matrix.
2. Compute determinant of a matrix.
3. Compute inverse matrix



1.1 Introduction

WHY WE NEED MATRICES?

In general, matrices are used as a notation that represents 
simplified form of a linear system problem



1.1 Introduction
A matrix with m rows and n columns has entries 𝑎𝑎𝑖𝑖𝑖𝑖 , 𝑖𝑖 = 1,2, …𝑚𝑚, 𝑗𝑗 = 1,2, … ,𝑛𝑛 as follows:

𝑨𝑨 =

𝑎𝑎11 𝑎𝑎12 𝑎𝑎13 ⋯ 𝑎𝑎1𝑛𝑛
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23 ⋯ 𝑎𝑎2𝑛𝑛
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33 ⋯ 𝑎𝑎3𝑛𝑛
⋮ ⋮ ⋮ ⋮

𝑎𝑎𝑚𝑚𝑚 𝑎𝑎𝑚𝑚𝑚 𝑎𝑎𝑚𝑚𝑚 ⋯ 𝑎𝑎𝑚𝑚𝑚𝑚 𝑚𝑚×𝑛𝑛

When 
• 𝑚𝑚 = 𝑛𝑛 ∶ Square matrix of order 𝑛𝑛

• 𝑛𝑛 = 1 ∶ Column Vector, i.e. 𝑩𝑩 =

𝑏𝑏1
𝑏𝑏2
⋮
𝑏𝑏𝑚𝑚

• 𝑚𝑚 = 1 ∶ Row vector, i.e. 𝑪𝑪 = 𝑐𝑐1 𝑐𝑐2 ⋯ 𝑐𝑐𝑛𝑛

Order of matrix



1.1 Introduction
Symmetric matrix:

An n x n matrix 𝑨𝑨 is a symmetric matrix if 𝑨𝑨T = 𝑨𝑨,  i.e. 𝑎𝑎𝑖𝑖𝑖𝑖 = 𝑎𝑎𝑗𝑗𝑗𝑗

e.g.   𝑨𝑨 =
1 −3 5
−3 2 7
5 7 0

Skew-symmetric or antisymmetric matrix:

An n x n matrix 𝑨𝑨 is known as antisymmetric matrix if 𝑨𝑨T = −𝑨𝑨, i.e. 
𝑎𝑎𝑖𝑖𝑖𝑖 = −𝑎𝑎𝑗𝑗𝑗𝑗

e.g.   𝑨𝑨 =
0 −4 6
4 0 −7
−6 7 0



1.1 Introduction
Diagonal matrix: 
the entries other than main diagonal are all zeros

e.g.   𝑩𝑩 =
1 0 0
0 3 0
0 0 4

and 𝑪𝑪 =
2 0 0
0 0 0
0 0 −1

Identity matrix: 
the entries are all zeros except 𝑎𝑎𝑖𝑖𝑖𝑖 = 1, 𝑖𝑖 = 1,2, …𝑛𝑛

e.g. 𝑰𝑰2 = 1 0
0 1 and 𝑰𝑰3 =

1 0 0
0 1 0
0 0 1



1.2 Basic Operation on Vectors and Matrices
a) Equality
Two matrices are equal if and only if all their elements are the same including their order.

𝑨𝑨 = 𝑩𝑩

b) Addition and Subtraction
𝑨𝑨 + 𝑩𝑩 and 𝑨𝑨 − 𝑩𝑩 are defined only when 𝑨𝑨 and 𝑩𝑩 are the same order.
𝑨𝑨 + 𝑩𝑩 has elements 𝑎𝑎𝑖𝑖𝑖𝑖 + 𝑏𝑏𝑖𝑖𝑖𝑖 and 𝑨𝑨 − 𝑩𝑩 has elements 𝑎𝑎𝑖𝑖𝑖𝑖 − 𝑏𝑏𝑖𝑖𝑖𝑖.
e.g.

3 −5 4
−1 6 0 + 2 3 −4

0 5 1 = 3 + 2 −5 + 3 4 + (−4)
−1 + 0 6 + 5 0 + 1

= 5 −2 0
−1 11 1

5 −1
4 6
2 3

−
2 −4
3 7
−7 8

=
5 − 2 −1 − (−4)
4 − 3 6 − 7

2 − (−7) 3 − 8
=

3 3
1 −1
9 −5



1.2 Basic Operation on Vectors and Matrices

c) Multiplication by a scalar
Scalar c is multiplied to each of the elements of matrix.
e.g.

3 −3 2 6 = 3(−3) 3(2) 3(6) = −9 6 18

−2
0 3 −1
−4 2 6
5 −3 7

=
−2 0 −2 3 −2 −1
−2 −4 −2 2 −2 6
−2 5 −2 −3 −2 7

=
0 −6 2
8 −4 −12

−10 6 −14



1.2 Basic Operation on Vectors and Matrices

d) Properties of the transpose matrix

i) 𝑨𝑨T T = 𝑨𝑨
ii) 𝑨𝑨 + 𝑩𝑩 T = 𝑨𝑨T + 𝑩𝑩T

For example:
𝑨𝑨T + 𝑨𝑨 T = 𝑨𝑨T T + 𝑨𝑨T = 𝑨𝑨 + 𝑨𝑨T

and this shows 𝑨𝑨T + 𝑨𝑨 must be a symmetric matrix.



1.2 Basic Operation on Vectors and Matrices

e) Basic Rules of Addition 

If matrices 𝑨𝑨,𝑩𝑩 and 𝑪𝑪 have the same order:

𝑨𝑨 + 𝑩𝑩 = 𝑩𝑩 + 𝑨𝑨 (Commutative law)

𝑨𝑨 + 𝑩𝑩 + 𝑪𝑪 = 𝑨𝑨 + 𝑩𝑩 + 𝑪𝑪 (Associative law)

𝑟𝑟 𝑨𝑨 + 𝑩𝑩 = 𝑟𝑟𝑨𝑨 + 𝑟𝑟𝑩𝑩 (Distributive law)



1.2 Basic Operation on Vectors and Matrices

Exercise 1.1:

Let 𝑨𝑨 =
2 −1 3
7 5 0
−2 8 1

, 𝑩𝑩 =
1 0 5
−2 4 6
3 7 −2

, 𝑪𝑪 = 4 3 0
−3 6 −6 , 𝑫𝑫 =

5 3
7 −2
1 0

Find
1) 𝑨𝑨T + 2𝑩𝑩
2) 𝑩𝑩 − 5𝑪𝑪
3) 6 𝑫𝑫T − 2𝑪𝑪

[Ans: 
4 7 8
−5 13 20
9 14 −3

; undefined; 22 36 6
24 −24 12 ]



1.3 Properties of Matrix Multiplication

Matrix multiplication:
Given matrix A with order 𝑝𝑝 × 𝑞𝑞 and matrix B with order 𝑞𝑞 × 𝑟𝑟, 

product of AB = C has an order of 𝑝𝑝 × 𝑟𝑟.

e.g.
Given 𝑨𝑨2×3 and 𝑩𝑩3×5, 

The order of matrix C = AB is 2 × 5,
but BA is undefined.



1.3 Properties of Matrix Multiplication
Matrix multiplication:
To multiply two matrices, take the row of the first matrix multiply to the 
column of the second matrix. 
i.e. row1 × column2 gives the value of 𝑎𝑎12
For example:

1 3 2
3 0
4 −1
1 2

1 X 3 3 X 2

1 X 2

= 1 3 + 3 4 + 2 1 1 0 + 3 −1 + 2 2 = 17 1



1.3 Properties of Matrix Multiplication

Matrix multiplication:
For example:

2 3 −1
0 5 2
−1 6 4

3 0 8
4 −1 2
1 2 −3

=
2 3 + 3 4 + (−1)(1) 2 0 + 3 −1 + (−1)(2) 2 8 + 3 2 + (−1)(−3)

0 3 + 5 4 + 2(1) 0 0 + 5 −1 + 2(2) 0 8 + 5 2 + 2(−3)
−1 3 + 6 4 + 4(1) −1 0 + 6 −1 + 4(2) −1 8 + 6 2 + 4(−3)

=
17 −5 25
22 −1 4
25 2 −8

row2 × column3 gives the value of 𝑎𝑎23 = 4



1.3 Properties of Matrix Multiplication
Some Properties:
Let 𝐴𝐴 ∈ 𝑀𝑀𝑚𝑚×𝑛𝑛, let 𝐵𝐵 and 𝐶𝐶 have orders for which the indicated sums and products are 
defined.
• 𝑨𝑨 𝑩𝑩𝑩𝑩 = 𝑨𝑨𝑨𝑨 𝑪𝑪 (associative law of multiplication)
• 𝑨𝑨 𝑩𝑩 + 𝑪𝑪 = 𝑨𝑨𝑨𝑨 + 𝑨𝑨𝑨𝑨 (left distributive law)
• 𝑩𝑩 + 𝑪𝑪 𝑨𝑨 = 𝑩𝑩𝑩𝑩 + 𝑪𝑪𝑪𝑪 (right distributive law)
• 𝑟𝑟 𝑨𝑨𝑨𝑨 = 𝑟𝑟𝑨𝑨 𝑩𝑩 = 𝑨𝑨(𝑟𝑟𝑩𝑩) for any scalar 𝑟𝑟
• 𝑰𝑰𝑚𝑚𝑨𝑨 = 𝑨𝑨 = 𝑨𝑨𝑰𝑰𝑛𝑛 (identity for matrix multiplication)
• 𝑨𝑨𝑨𝑨𝑨𝑨 T = 𝑪𝑪T𝑩𝑩T𝑨𝑨T (Transpose of a product)
• 𝑨𝑨𝑘𝑘 = 𝑨𝑨…𝑨𝑨 for k times (Power of a matrix)

Warnings:
• 𝑨𝑨𝑨𝑨 ≠ 𝑩𝑩𝑩𝑩
• The cancellation laws do not hold for matrix multiplication.

i.e., If 𝑨𝑨𝑨𝑨 = 𝑨𝑨𝑨𝑨, 𝑩𝑩 ≠ 𝑪𝑪 in general.
• If 𝑨𝑨𝑨𝑨 = 𝟎𝟎𝑚𝑚×𝑛𝑛, we cannot conclude either 𝑨𝑨 = 𝟎𝟎 or 𝑩𝑩 = 𝟎𝟎.



1.3 Properties of Matrix Multiplication

Exercise 1.2:

Given 𝑨𝑨 =
2 −1 3
7 5 0
−2 8 1

, 𝑩𝑩 =
1 0 5
−2 4 6
3 7 −2

, 𝑪𝑪 =
2 −1 0
1 2 −6
3 0 5

, 

Find
1) 3𝑩𝑩𝑩𝑩
2) (𝑨𝑨𝑨𝑨)T+2𝑪𝑪
3) Verify Associative law of multiplication

[Ans: 
51 −3 75
54 30 18
21 33 −156

;
17 −5 −15
19 24 27
4 65 46

]



1.4 Determinants
Computation of determinant, Method 1:

For a matrix with order 2 × 2, 

i.e. 𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑 = 𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏

For a matrix with order 3 × 3, 

i.e. 
𝑎𝑎 𝑏𝑏 𝑐𝑐
𝑑𝑑 𝑒𝑒 𝑓𝑓
𝑔𝑔 ℎ 𝑖𝑖

= 𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑐𝑐𝑐𝑐𝑐 − (𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑎𝑎𝑎𝑎𝑎)

𝑎𝑎 𝑏𝑏 𝑐𝑐
𝑑𝑑 𝑒𝑒 𝑓𝑓
𝑔𝑔 ℎ 𝑖𝑖

𝑎𝑎 𝑏𝑏 𝑐𝑐
𝑑𝑑 𝑒𝑒 𝑓𝑓
𝑔𝑔 ℎ 𝑖𝑖



1.4 Determinants
Method 2:

Determinant of an 𝑛𝑛 × 𝑛𝑛 matrix A is denoted by 𝑨𝑨 and it is computed by 
Cofactors Expansion along a row:

𝑨𝑨 = �
𝑗𝑗=1

𝑛𝑛

(−1)𝑖𝑖+𝑗𝑗𝑎𝑎𝑖𝑖𝑗𝑗𝑴𝑴𝑖𝑖𝑖𝑖

or Cofactors Expansion along a column:

𝑨𝑨 = �
𝑖𝑖=1

𝑛𝑛

(−1)𝑖𝑖+𝑗𝑗𝑎𝑎𝑖𝑖𝑗𝑗𝑴𝑴𝑖𝑖𝑖𝑖

where 𝑎𝑎𝑖𝑖𝑗𝑗 is the entry of matrix A and

𝑴𝑴𝑖𝑖𝑖𝑖 is known as minor.

i.e. 𝑖𝑖 = 2 gives 
cofactor 

expansion along 
the second row 

i.e. 𝑗𝑗 = 3 gives 
cofactor 

expansion along 
the third column 



1.4 Determinants
Minor of a matrix, 𝑴𝑴𝑖𝑖𝑖𝑖:
Minor, 𝑴𝑴𝑖𝑖𝑖𝑖, of an 𝑛𝑛 × 𝑛𝑛 matrix A is the determinant of (𝑛𝑛 − 1) × (𝑛𝑛 − 1) matrix

formed from A by deleting the row and column that contains 𝑎𝑎𝑖𝑖𝑖𝑖.
Example:

Given 𝑨𝑨 =
2 −1 3
6 5 8
−4 7 1

, find the minor 𝑴𝑴32.

Solution:
Delete the row and column that contains 𝑎𝑎32 = 7:

𝑨𝑨 =
2 −1 3
6 5 8
−4 7 1

𝑴𝑴32 = 2 3
6 8 = 16 − 18 = −2



1.4 Determinants
The sign associated with the minor is given as follows:

𝑨𝑨 =

+ − + − ⋯
− + − + ⋯
+ − + − ⋯
− + − + ⋯
⋮ ⋮ ⋮ ⋮

A minor multiplied by the appropriate sign is known as cofactor, 𝑨𝑨𝑖𝑖𝑖𝑖.

So, 𝑨𝑨𝑖𝑖𝑖𝑖 = (−1)𝑖𝑖+𝑗𝑗𝑴𝑴𝑖𝑖𝑖𝑖

e.g. Given 𝑨𝑨 =
2 −1 3
6 5 8
−4 7 1

, 

𝑨𝑨21 = (−1) −1 3
7 1 = 22

𝑨𝑨13 = (+1) 6 5
−4 7 = 62

Alternating signs 
start with “+” at 

𝑎𝑎11



1.4 Determinants

Example:

Find the determinant of matrix 𝑨𝑨 =
2 −1 3
7 5 0
−2 8 1

.

Solution:
Cofactor expansion across the first row (𝑖𝑖 = 1):

𝑨𝑨 = +1 2 5 0
8 1 + (−1) −1 7 0

−2 1 + (+1)(3) 7 5
−2 8

= 2 5 + 1 7 + 3 66
= 215

Cofactor expansion across the second column (𝑗𝑗 = 2):

𝑨𝑨 = − −1 7 0
−2 1 + 5 2 3

−2 1 − 8 2 3
7 0

= 1 7 + 5 8 − 8 −21
= 215 (same answer)

𝑨𝑨 = �
𝑗𝑗=1

𝑛𝑛

(−1)𝑖𝑖+𝑗𝑗 𝑎𝑎𝑖𝑖𝑗𝑗 𝑴𝑴𝑖𝑖𝑖𝑖

𝐴𝐴 =
+ − +
− + −
+ − +



1.4 Determinants
Properties of determinants: (Method 3)
Theorem 1:
If 𝑨𝑨 is a triangular matrix, then 𝑨𝑨 = 𝑎𝑎11𝑎𝑎22𝑎𝑎33 …𝑎𝑎𝑛𝑛𝑛𝑛. 
e.g.

𝟏𝟏 2 0 1
0 𝟑𝟑 1 1
0 0 𝟐𝟐 3
0 0 0 𝟏𝟏

= 1 3 2 1 = 6

Upper triangular

𝟏𝟏 0 0 0
1 −𝟏𝟏 0 0
1 3 𝟐𝟐 0
2 1 1 𝟒𝟒

= 1 −1 2 4 = −8

Lower triangular



1.4 Determinants
Properties of determinants:
Theorem 2:
Let 𝐴𝐴 be a square matrix.
a) If a multiple of one row of 𝑨𝑨 is added to another row to produce a matrix 𝑩𝑩, 

then 𝑩𝑩 = 𝑨𝑨 .

e.g. 1 2
2 3 −2𝑟𝑟1+𝑟𝑟2

= 1 2
0 −1

b) If two rows of 𝑨𝑨 are interchanged to produce 𝑩𝑩, then 𝑩𝑩 = − 𝑨𝑨 .

e.g.
0 1 2
1 2 3
2 3 0 𝑟𝑟1↔𝑟𝑟2

= −
1 2 3
0 1 2
2 3 0

c) If one row of 𝑨𝑨 multiplied by 𝑘𝑘 to produce 𝑩𝑩, then 𝑩𝑩 = 𝑘𝑘 𝑨𝑨 .

e.g. 5 2
3 6 = 3 5 2

1 2 , 2 12
4 3 = 2 1 6

4 3 = (2)(3) 1 2
4 1



1.4 Determinants
Properties of determinants:
Theorem 3:
If 𝐴𝐴 is an 𝑛𝑛 × 𝑛𝑛 matrix, 𝑨𝑨T = 𝑨𝑨 .

e.g.
1 2 3
4 5 6
7 8 9

=
1 4 7
2 5 8
3 6 9

Theorem 4:
If two rows (columns) of 𝑨𝑨 are equal, then 𝑨𝑨 = 0.

e.g.

1 0 3 1
1 0 5 1
2 1 7 2
1 0 1 1

= 0,

2 5 8 3
1 0 1 0
5 8 4 6
1 0 1 0

= 0.



1.4 Determinants
Properties of determinants:
Theorem 5:
If a row (column) of 𝑨𝑨 consists entirely of zeroes, then 𝑨𝑨 = 0.

e.g.  

1 0 1 5
4 0 2 2
1 0 1 1
1 0 3 4

= 0,
1 2 5
4 −2 7
0 0 0

= 0.

Theorem 6:
• If 𝑨𝑨 and 𝑩𝑩 are 𝑛𝑛 × 𝑛𝑛 matrices, 𝑨𝑨𝑩𝑩 = 𝑨𝑨 𝑩𝑩 .
• If 𝑨𝑨 is an 𝑛𝑛 × 𝑛𝑛 matrix, then 𝑨𝑨 is invertible or nonsingular matrix iff 𝑨𝑨 ≠ 0.
• 𝑨𝑨 + 𝑩𝑩 ≠ 𝑨𝑨 + 𝑩𝑩 in general.



1.4 Determinants
Exercise 1.3:
Evaluate the following determinants:

1) 
5 2 0
0 −2 5
0 0 4

2) 

4 2 2 0
2 0 0 0
3 0 0 1
0 0 1 0

3) 

1 −3 1 −2
2 −5 −1 −2
0 −4 5 1
−3 10 −6 8

by using cofactor expansion across third column.

[Ans: - 40; 4; 0]



1.4 Determinants
Exercise 1.3:
Evaluate the following determinants:

4) Given 
𝑎𝑎 𝑏𝑏 𝑐𝑐
𝑑𝑑 𝑒𝑒 𝑓𝑓
𝑔𝑔 ℎ 𝑖𝑖

= 7, find

a) 
𝑎𝑎 𝑏𝑏 𝑐𝑐
3𝑑𝑑 3𝑒𝑒 3𝑓𝑓
𝑔𝑔 ℎ 𝑖𝑖

b) 
𝑎𝑎 + 𝑑𝑑 𝑏𝑏 + 𝑒𝑒 𝑐𝑐 + 𝑓𝑓
𝑑𝑑 𝑒𝑒 𝑓𝑓
𝑔𝑔 ℎ 𝑖𝑖

5) 
1 3 2
−2 3 −4
5 5 6

[Ans: 21; 7; -36]



1.5 Inverse of a Matrix

Given a matrix A, 

if 𝑩𝑩𝑩𝑩 = 𝑨𝑨𝑨𝑨 = 𝑰𝑰, it means that B is the inverse of A and hence,
𝑩𝑩 = 𝑨𝑨−1

To compute an inverse from a matrix,

𝑨𝑨−1 =
1
𝑨𝑨

adj 𝑨𝑨

where 𝑨𝑨 ≠ 0 (A is a nonsingular matrix) and adj A is an adjoint matrix of A 
formed by transpose matrix which consists of cofactors of each of the elements 
in A. 



1.5 Inverse of a Matrix

Example:

Given 𝑨𝑨 =
3 −2 1
5 6 2
1 0 −3

, find the inverse matrix of A.

Solution:
Step 1: Find the determinant of matrix

3 −2 1
5 6 2
1 0 −3

= 3 6 −3 + −2 2 1 + 5 0 1

− 1 6 1 + 5 −2 −3 + 3 2 0
= −94



1.5 Inverse of a Matrix

Solution:

Step 2: Find adj A, which is the transpose of cofactor matrix

adj 𝐀𝐀 =

+ 6 2
0 −3 − 5 2

1 −3 + 5 6
1 0

− −2 1
0 −3 + 3 1

1 −3 − 3 −2
1 0

+ −2 1
6 2 − 3 1

5 2 + 3 −2
5 6

𝑇𝑇

=
+(−18) −(−17) +(−6)
−(6) +(−10) −(2)

+(−10) −(1) +(28)

𝑇𝑇

=
−18 17 −6
−6 −10 −2
−10 −1 28

𝑇𝑇

=
−18 −6 −10
17 −10 −1
−6 −2 28



1.5 Inverse of a Matrix
Solution:

Step 3: Find inverse matrix 𝑨𝑨−1 = 1
𝑨𝑨

adj 𝑨𝑨

𝑨𝑨−1 =
1

−94

−18 −6 −10
17 −10 −1
−6 −2 28

=

9
47

3
47

5
47

−
17
94

5
47

1
94

3
47

1
47

−
14
47



1.5 Inverse of a Matrix
Exercise 1.4:
Find the inverse of the following matrices:

1) 𝑨𝑨 = 2 4
5 10

2) 𝑩𝑩 = −1 2
3 5

3) 𝑪𝑪 =
2 1 3
1 −1 1
1 4 −2

4) 𝑫𝑫 =
5 0 3
6 4 −2
1 0 −3

[Ans: no inverse; 
−5/11 2/11
3/11 1/11 ;

−1/7 1 2/7
3/14 −1/2 1/14
5/14 −1/2 −3/14

;
1/6 0 1/6
−2/9 1/4 −7/18
1/18 0 −5/18

]
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