

ocw.utem.edu.my

BMCG 1013 DIFFERENTIAL EQUATIONS

FOURIER SERIES (Fourier Sine Series, Fourier Cosine Series & Half-range)

Rahifa Ranom

rahifa@utem.edu.my

ocw.utem.edu.my

Learning Outcomes

Upon completion of this week lesson, students should be able to:

- Find the Fourier Series for odd and even function.
- ii. Determine the Fourier Series of half range

OPENCOURSEWARE ocw.utem.edu.my

Jew.utem.edu.my

CHAPTER 4 Fourier Series

- ☐ Fourier Sine Series (odd function)
- ☐ Fourier Cosine Series (even function)
- □ Fouries Series of half-range function

OPENCOURSEWARE ocw.utem.edu.my

4.4 Fourier Odd and Even Series

Note that: The odd and even function can also be solved using Fourier Series for interval [-L, L]

ocw.utem.edu.my

4.4.1 Fourier Sine Series (also known as Fourier odd series)

If the function, f(t) is odd, then Fourier Series is given as

$$f(t) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi t}{L}$$

for interval [-L, L] where $a_0 = 0$, $a_n = 0$ and

$$b_n = \frac{2}{L} \int_0^L f(t) \sin \frac{n\pi t}{L} dt$$

ocw.utem.edu.my

4.4.2 Fourier Cosine Series (also known as Fourier even series)

If the function, f(t) is even, then Fourier Series is given as

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi t}{L}$$

for interval [-L, L] where $b_n = 0$ and

$$a_0 = \frac{2}{L} \int_0^L f(t) dt$$

$$a_n = \frac{2}{L} \int_0^L f(t) \cos \frac{n\pi t}{L} dt$$

Note that: If the function is neither an odd or an even function, then use Fourier Series

ocw.utem.edu.my

Example 4.8

Sketch the graph of the following function

$$f(t) = t^2$$
; $-2 < t < 2$; $f(t+4) = f(t)$

over the interval -6 < t < 6. Determine whether the function is odd, even or neither function, hence find the Fourier Series of the function.

ocw.utem.edu.my

Example 4.8 – Solution

Firstly, sketch the $f(t) = t^2$, $-2 \le t \le 2$.

Then, with T=4, extend the plot within the interval $-6 \le t \le 6$ by repeating itself identically.

ocw.utem.edu.my

Example 4.8

The sketch is symmetric about y —axis and f(-t) = f(t), therefore this function is an even function. The Fourier Series can be obtained using Fourier Cosine Series.

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi t}{L}$$

Here L=2 and $b_n=0$;

$$a_0 = \frac{2}{L} \int_0^L f(t) dt = \frac{2}{2} \int_0^2 t^2 dt = \frac{t^3}{3} \Big|_0^2 = \frac{8}{3}$$

$$a_n = \frac{2}{L} \int_0^L f(t) \cos \frac{n\pi t}{L} dt = \frac{2}{2} \int_0^2 t^2 \cos \frac{n\pi t}{2} dt$$
Tabular
Method

ocw.utem.edu.my

Example 4.8

$$a_{n} = \int_{0}^{2} t^{2} \cos \frac{n\pi t}{2} dt$$

$$= \frac{2t^{2}}{n\pi} \sin \frac{n\pi t}{2} + \frac{8t}{(n\pi)^{2}} \cos \frac{n\pi t}{2} - \frac{16}{(n\pi)^{3}} \sin \frac{n\pi t}{2} \Big|_{0}^{2}$$

$$= \frac{8}{n\pi} \sin n\pi + \frac{16}{(n\pi)^{2}} \cos n\pi - \frac{16}{(n\pi)^{3}} \sin n\pi$$

$$- \left(-\frac{16}{(n\pi)^{3}} \sin 0 \right)$$

$$= \frac{16}{(n\pi)^{2}} (-1)^{n}$$

Diff	Int
(+)t ²	$\cos \frac{n\pi t}{2}$
(-)2t	$\frac{2}{n\pi}\sin\frac{n\pi t}{2}$
(+)2	$-\frac{4}{(n\pi)^2}\cos\frac{n\pi t}{2}$
0	$-\frac{8}{(n\pi)^3}\sin\frac{n\pi t}{2}$

$$f(t) = \frac{4}{3} + \sum_{n=1}^{\infty} \frac{16}{(n\pi)^2} (-1)^n \cos \frac{n\pi t}{2}$$

ocw.utem.edu.my

Example 4.9

Sketch the periodic function

$$f(t) = |t|, -1 \le t \le 1,$$
$$f(t+2) = f(t)$$

within the interval $-3 \le t \le 3$. Determine whether the function is odd, even or neither function, hence find the Fourier Series of the function.

ocw.utem.edu.my

Example 4.9 - Solution

Firstly, sketch the $f(t) = |t|, -1 \le t \le 1$.

Then, with T=2, extend the plot within the interval $-3 \le t \le 3$ by repeating itself identically. The sketch is symmetric about y-axis, hence the function is an even function.

ocw.utem.edu.my

Example 4.9

The Fourier Series can be obtained using Fourier Cosine Series.

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi t}{L}$$

Here L=1 and $b_n=0$;

$$a_0 = \frac{2}{L} \int_0^L f(t) dt = \frac{2}{1} \int_0^1 t dt = 2 \frac{t^2}{2} \Big|_0^1 = 1$$

$$a_n = \frac{2}{L} \int_0^L f(t) \cos \frac{n\pi t}{L} dt = \frac{2}{1} \int_0^1 t \cos \frac{n\pi t}{1} dt$$

Note that: f(t) = t, $0 \le t \le 1$.

| | Tabular | Method

ocw.utem.edu.my

Example 4.9

$$a_{n} = 2 \int_{0}^{1} t \cos \frac{n\pi t}{1} dt = 2 \left(\frac{t}{n\pi} \sin n\pi t + \frac{1}{(n\pi)^{2}} \cos n\pi t \right)_{0}^{1}$$

$$= 2 \left(\frac{1}{n\pi} \sin n\pi t + \frac{1}{(n\pi)^{2}} \cos n\pi t - \frac{1}{(n\pi)^{2}} \cos 0 \right)$$

$$= \frac{2}{(n\pi)^{2}} ((-1)^{n} - 1)$$

$$f(t) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{(n\pi)^2} ((-1)^n - 1) \cos n\pi t$$

Diff	Int
(+) <i>t</i> \	$\cos n\pi t$
(-)1	$\frac{1}{n\pi}\sin n\pi t$
0	$-\frac{1}{(n\pi)^2}\cos n\pi t$

ocw.utem.edu.my

Example 4.10

Sketch the periodic function

$$f(t) = -t, -\pi \le t \le \pi,$$
$$f(t + 2\pi) = f(t)$$

within the interval $-3\pi \le t \le 3\pi$. Determine whether the function is odd, even or neither function, hence find the Fourier Series of the function.

ocw.utem.edu.my

Example 4.10 - Solution

Firstly, sketch the $f(t) = -t, -\pi \le t \le \pi$.

Then, with $T=2\pi$, extend the plot within the interval $-3\pi \le t \le 3\pi$ by repeating itself identically. The sketch is symmetric about the origin, hence the function is an odd function.

ocw.utem.edu.my

Example 4.10

The Fourier Series can be obtained using Fourier Sine Series.

$$f(t) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi t}{L}$$

Here $L=\pi$ and $a_0=0$, $a_n=0$;

$$b_n = \frac{2}{L} \int_0^L f(t) \sin \frac{n\pi t}{L} dt = \frac{2}{\pi} \int_0^{\pi} -t \sin \frac{n\pi t}{\pi} dt$$
Tabular
Method

ocw.utem.edu.my

Example 4.10

$$b_n = \frac{2}{\pi} \int_0^{\pi} -t \sin nt \, dt = \frac{t}{n} \cos nt - \frac{1}{n^2} \sin nt \Big|_0^{\pi}$$

$$= \frac{2}{\pi} \left[\frac{\pi}{n} \cos n\pi - \frac{1}{n^2} \sin n\pi - \frac{1}{n^2} \sin 0 \right]$$

$$= (-1)^n$$

$$=\frac{2}{n}(-1)^n$$

$$f(t) = \sum_{n=1}^{\infty} \frac{2}{n} (-1)^n \sin nt$$

Diff	Int
(+)-t	sin nt
(-) - 1	$-\frac{1}{n}\cos nt$
0	$-\frac{1}{n^2}\sin nt$

ocw.utem.edu.my

Exercise 4.5

1. Sketch the periodic function

$$f(t) = \begin{cases} -1; & -\pi \le t \le 0 \\ 1; & 0 \le t \le \pi \end{cases},$$
$$f(t+2\pi) = f(t)$$

within the interval $-3\pi \le t \le 3\pi$. Determine whether the function is odd, even or neither function, hence find the Fourier Series of the function.

2. Sketch the periodic function

$$f(t) = \begin{cases} t+1; & -1 \le t \le 0 \\ -t+1; & 0 \le t \le 1 \end{cases}$$
$$f(t+2) = f(t)$$

within the interval $-3 \le t \le 3$. Determine whether the function is odd, even or neither function, hence find the Fourier Series of the function.

Answers:

1.
$$f(t) = \sum_{n=1}^{\infty} \frac{2}{\pi n} [1 + (-1)^{n+1}] \sin nt$$

2.
$$f(t) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{(n\pi)^2} [1 + (-1)^{n+1}] \cos n\pi t$$

ocw.utem.edu.my

4.5 Half-Range Series

A periodic function with period T=2L is defined over the half-range 0 < t < L instead of the full-range -L < t < 0. The function may be expanded in a series of sine terms (odd function) or of cosine terms (even function). The series is called a half-range Fourier series.

The half-range function can be expanded into

- Even Function: Use Fourier Cosine Series
- Odd Function: Use Fourier Sine Series

OPENCOURSEWARE ocw.utem.edu.my

Example 4.11

Sketch the function f(t) = t, 0 < t < 2.

OPENCOURSEWARE ocw.utem.edu.my

Example 4.11

Expansion of the function f(t) = t, 0 < t < 2.

Expand the function to an even function which is symmetric about *y*-axis.

Expand the function to an odd function which is symmetric about the origin.

ocw.utem.edu.my

Example 4.12

Find the half-range Fourier series for the function

$$f(t) = t$$
, $0 < t < 2$

using

- a) Even Function Expansion
- b) Odd Function Expansion

Solution:

a) The plot of even function expansion in the interval [-6,6] where L = 2; T = 4.
 Since it is an even function, use Fourier Cosine Series formula for the series.

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi t}{L}$$

$$b_n = 0; \ a_0 = \frac{2}{L} \int_{-L}^{L} f(t) dt; \ a_n = \frac{2}{L} \int_{-L}^{L} f(t) \cos \frac{n\pi t}{L} dt$$

ocw.utem.edu.my

Example 4.12

Solution:

$$a_{0} = \frac{2}{L} \int_{0}^{L} f(t) dt = \frac{2}{2} \int_{0}^{2} t dt = \left[\frac{t^{2}}{2}\right]_{0}^{2} = 2$$

$$a_{n} = \frac{2}{L} \int_{0}^{L} f(t) \cos \frac{n\pi t}{L} dt = \frac{2}{2} \int_{0}^{2} t \cos \frac{n\pi t}{2} dt$$

$$= \left[\frac{2t}{n\pi} \sin \frac{n\pi t}{2} + \frac{4}{(n\pi)^{2}} \cos \frac{n\pi t}{2}\right]_{0}^{2}$$

$$= \frac{4}{n\pi} \sin n\pi + \frac{4}{(n\pi)^{2}} \cos n\pi - \frac{4}{(n\pi)^{2}} = \frac{4}{(n\pi)^{2}} [(-1)^{n} - 1]$$
Diff
$$(+)t \quad \cos \frac{n\pi t}{2}$$

$$(-)1 \quad \frac{2}{n\pi} \sin \frac{n\pi t}{2}$$

$$0 \quad -\frac{4}{(n\pi)^{2}} \cos \frac{n\pi t}{2}$$

The Fourier Series of the even function expansion is

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi t}{L} = 1 + \sum_{n=1}^{\infty} \frac{4}{(n\pi)^2} [(-1)^n - 1] \cos \frac{n\pi t}{2}$$

ocw.utem.edu.my

Example 4.12

Solution:

b) The plot of an odd function expansion in the interval [-6,6] where L=2; T=4.

Since it is an odd function, use Fourier Sine Series formula for the series.

$$f(t) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi t}{L}$$

$$a_0 = a_n = 0; \ b_n = \frac{2}{L} \int_0^L f(t) \sin \frac{n\pi t}{L} dt$$

ocw.utem.edu.my

Example 4.12

Solution:

$$b_n = \frac{2}{L} \int_0^L f(t) \sin \frac{n\pi t}{L} dt = \frac{2}{2} \int_0^2 t \sin \frac{n\pi t}{2} dt$$
$$= \left[-\frac{2t}{n\pi} \cos \frac{n\pi t}{2} + \frac{4}{(n\pi)^2} \sin \frac{n\pi t}{2} \right]_0^2$$
$$= -\frac{4}{n\pi} \cos n\pi + \frac{4}{(n\pi)^2} \sin n\pi = \frac{4}{n\pi} (-1)^{n+1}$$

Diff	Int
(+)t	$\sin \frac{n\pi t}{2}$
(-)1	$\frac{-2}{n\pi}\cos\frac{n\pi t}{2}$
0	$-\frac{4}{(n\pi)^2}\sin\frac{n\pi t}{2}$

The Fourier Series of the odd function expansion is

$$f(t) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi t}{L} = \sum_{n=1}^{\infty} \frac{4}{(n\pi)^2} (-1)^{n+1} \sin \frac{n\pi t}{2}$$

ocw.utem.edu.my

Example 4.13

Find the half-range Fourier series for the function

$$f(t) = 1 - t^2$$
, $0 < t < 1$

using

- a) Even Function Expansion
- b) Odd Function Expansion

Solution:

a) The plot of even function expansion in the interval [-3,3] where L=1; T=2. Since it is an even function, use Fourier Cosine Series formula for the series.

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi t}{L}$$

$$b_n = 0$$
; $a_0 = \frac{2}{L} \int_0^L f(t) dt$; $a_n = \frac{2}{L} \int_0^L f(t) \cos \frac{n\pi t}{L} dt$

ocw.utem.edu.my

Example 4.13

Solution:

$$a_0 = \frac{2}{L} \int_0^L f(t) dt = \frac{2}{1} \int_0^1 (1 - t^2) dt = \left[t - \frac{t^3}{3} \right]_0^1 = 2 \left(1 - \frac{1}{3} \right) = \frac{4}{3}$$

$$a_n = \frac{2}{L} \int_0^L f(t) \cos \frac{n\pi t}{L} dt = \frac{2}{1} \int_0^1 (1 - t^2) \cos n\pi t dt$$

$$= 2 \left[\frac{(1 - t^2)}{n\pi} \sin n\pi t - \frac{2t}{(n\pi)^2} \cos n\pi t + \frac{2}{(n\pi)^3} \sin n\pi t \right]_0^1$$

$$= 2 \left(-\frac{2}{(n\pi)^2} \cos n\pi + \frac{2}{(n\pi)^3} \sin n\pi - 0 \right) = \frac{4}{(n\pi)^2} (-1)^{n+1}$$

Diff	Int
$(+)(1-t^2)$	$\cos n\pi t$
(-) - 2t	$\frac{\sin n\pi t}{n\pi}$
(+) - 2	$-\frac{\cos n\pi t}{(n\pi)^2}$
0	$-\frac{\sin n\pi t}{(n\pi)^3}$

The Fourier Series of the even function expansion is

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi t}{L} = \frac{2}{3} + \sum_{n=1}^{\infty} \frac{4}{(n\pi)^2} (-1)^{n+1} \cos n\pi t$$

ocw.utem.edu.my

Example 4.13

Solution:

b) The plot of an odd function expansion in the interval [-3,3] where L=1; T=2.

Since it is an odd function, use Fourier Sine Series formula for the series.

$$f(t) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi t}{L}$$

$$a_0 = a_n = 0; \ b_n = \frac{2}{L} \int_0^L f(t) \sin \frac{n\pi t}{L} dt$$

ocw.utem.edu.my

Example 4.13

Solution:

$$b_n = \frac{2}{L} \int_0^L f(t) \sin \frac{n\pi t}{L} dt = \frac{2}{L} \int_0^1 (1 - t^2) \sin n\pi t dt$$

$$= 2 \left[-\frac{(1 - t^2)}{n\pi} \cos n\pi t - \frac{2t}{(n\pi)^2} \sin n\pi t - \frac{2}{(n\pi)^3} \cos n\pi t \right]_0^1$$

$$= 2 \left(-\frac{2}{(n\pi)^2} \sin n\pi - \frac{2}{(n\pi)^3} \cos n\pi - \left(-\frac{1}{n\pi} - \frac{2}{(n\pi)^3} \right) \right)$$

$$= 2 \left(-\frac{2(-1)^n}{(n\pi)^3} + \frac{1}{n\pi} + \frac{2}{(n\pi)^3} \right) = \frac{1}{n\pi} + \frac{4}{(n\pi)^3} [(-1)^{n+1} + 1]$$

Diff	Int
$(+)(1-t^2)$	$\sin n\pi t$
(-) - 2t	$-\frac{\cos n\pi t}{n\pi}$
(+) - 2	$-\frac{\sin n\pi t}{(n\pi)^2}$
0	$\frac{\cos n\pi t}{(n\pi)^3}$

The Fourier Series of the odd function expansion is

$$f(t) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi t}{L} = \sum_{n=1}^{\infty} \left(\frac{1}{n\pi} + \frac{4}{(n\pi)^3} [(-1)^{n+1} + 1] \right) \sin n\pi t$$

ocw.utem.edu.my

Exercise 4.6

Given the following function,

$$f(x) = -x; \quad 0 \le x \le \pi$$

- i. Sketch the even and odd expansion of the function
- ii. Find the Fourier cosine and the Fourier sine series, respectively.

Answers:

a) Even:
$$f(x) = -\frac{\pi}{2} + \sum_{n=1}^{\infty} \frac{2}{\pi n^2} [(-1)^{n+1} + 1] \cos nx$$

b) Odd:
$$f(x) = \sum_{n=1}^{\infty} \frac{2}{n} (-1)^n \sin nx$$

ocw.utem.edu.my

Exercise 4.7

Given the following functions,

$$f(x) = 1 + x; \quad 0 \le x \le 1$$

- i. Sketch the even and odd expansion of the function
- ii. Find the Fourier cosine and the Fourier sine series, respectively.

Answers:

a) Even:
$$f(x) = \frac{3}{2} + \sum_{n=1}^{\infty} \frac{2}{(n\pi)^2} [(-1)^n - 1] \cos n\pi x$$

b) Odd:
$$f(x) = \sum_{n=1}^{\infty} \frac{2}{n\pi} [2(-1)^{n+1} + 1] \sin n\pi x$$

ocw.utem.edu.my

References

Edwards C. H., Penny D.E. & Calvis D. (2016). Differential Equations and Boundary Value Problems, 5thEdition. Pearson Education Inc..

Zill, D. G. (2017). Differential Equations with Boundary-Value Problems, 9thEdition. Cengage Learning Inc

OPENCOURSEWARE ocw.utem.edu.my

Thank You

Questions & Answer?

