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APPLICATION OF LAPLACE TRANSFORM



Lesson outcomes

Upon completion of this week lesson, students should be able 

to:

i. Use Laplace transform to solve the initial value problem

ii. Use Laplace transform to solve the transfer function in a

control system



3.4  Application of Laplace transform

❑ Solving an initial value problem

- Transform of derivatives 

- Solve the initial value problem

❑ Solving a transfer function



3.4.1 Solving an initial value problem
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* Refer to the table of Laplace transform table
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Second derivative, n =2

Substitute n =2
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* Refer to the table of Laplace transform table



Example 3.32:
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Example 3.33:
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Solve following IVP by using the Laplace transform:
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Determine y(t) by using the convolution theorem: 
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*You may double check your answer by solving the homogeneous 

equation with characteristic equation as well.



Example 3.34:
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Solve following IVP by using the Laplace transform:
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Determine the y(t) by using the convolution theorem: 
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Exercise 3.13

Find the solution for

by using the Laplace transform. 

Answer:
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3.4.2   Solving a transfer function



A transfer function of a control system models the output

signal for all possible input values .

The input, X(s) and the output Y(s) can be related by a

transfer function
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The inverse Laplace transform 

is called the impulse response.
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In the time domain, the input and the output of a control system are

denoted as x(t) and y(t) respectively

In Laplace transform, all initial conditions are assumed to be

zero.



Given the transfer function of a system is given by

with the input signal                  Find the output response y(t)

for the system. 

Example 3.35:
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Determine the y(t) by using the convolution theorem: 
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Example 3.36:

Given the input x(t) and the output y(t) of an electronic system

can be related by

Determine the transfer function H(s) and the impulse response

h(t) for the system.
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assumed to be zero 

in Laplace transform

Transfer function

Solution:



 )()( 1 sHLth −=

t

s
L

2sin

4

2
2

1

=









+
= −

The impulse response h(t) for the system



Exercise 3.14

The input x(t) and output y(t) of an electronic system can

be represented by

Find the transfer function H(s) and the impulse response

h(t) for the system.

Answer:
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 Are you able to

i. use Laplace transform to solve the initial value problem 

ii. use Laplace transform to solve the transfer function in the

control system
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Thank You

Questions & Answer?


