

OPENCOURSEWARE ocw.utem.edu.my

BMCG 1013 DIFFERENTIAL EQUATIONS

APPLICATION OF LAPLACE TRANSFORM

Khoo Chin Foon

chinfoon@utem.edu.my

ocw.utem.edu.my

Lesson outcomes

Upon completion of this week lesson, students should be able to:

- Use Laplace transform to solve the initial value problem
- ii. Use Laplace transform to solve the transfer function in a control system

ocw.utem.edu.my

3.4 Application of Laplace transform

- Solving an initial value problem
 - Transform of derivatives
 - Solve the initial value problem
- Solving a transfer function

OPENCOURSEWARE ocw.utem.edu.my

3.4.1 Solving an initial value problem

ocw.utem.edu.my

$y^{(n)}(t)$, $n=1,2,3,$	$s^{n}Y(s)-s^{n-1}y(0)-s^{n-2}y'(0)sy^{(n)}(0)-y^{(n-1)}(0)$

* Refer to the table of Laplace transform table

Let
$$Y(s) = L\{f(t)\}$$

First derivative, n = 1

Substitute
$$n = 1$$

$$L\{y'(t)\} = sY(s) - y(0)$$

ocw.utem.edu.my

$y^{(n)}(t)$,	$n = 1, 2, 3, \dots$
<i>-</i>	,	-,-,-,-,-

$$s^{n}Y(s)-s^{n-1}y(0)-s^{n-2}y'(0)...-sy^{(n)}(0)-y^{(n-1)}(0)$$

* Refer to the table of Laplace transform table

Let
$$Y(s) = L\{f(t)\}$$

Substitute n = 2

Second derivative, n = 2

$$L{y''(t)} = s^2Y(s) - sy(0) - y'(0)$$

ocw.utem.edu.my

Example 3.32:

Determine the Y(s) for the following initial value problem:

$$\frac{d^2y}{dt^2} + 3\frac{dy}{dt} + 2y = 0, \quad y(0) = 0, \ y'(0) = 3$$

ocw.utem.edu.my

Solution:

$$L\left\{\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y\right\} = L\{0\}$$

Initial conditions:

$$y(0) = 0, y'(0) = 3$$

$$s^{2}Y(s) - sy(0) - y'(0) + 3(sY(s) - y(0)) + 2Y(s) = 0$$

$$s^{2}Y(s) - s(0) - 3 + 3(sY(s) - 0) + 2Y(s) = 0$$

$$(s^{2} + 3s + 2)Y(s) = 3$$

$$Y(s) = \frac{3}{s^2 + 3s + 2}$$

ocw.utem.edu.my

Example 3.33:

Solve following IVP by using the Laplace transform:

$$\frac{d^2y}{dt^2} + 3\frac{dy}{dt} + 2y = 0, \quad y(0) = 0, \ y'(0) = 3$$

ocw.utem.edu.my

By referring to the previous example, we know

$$Y(s) = \frac{3}{s^2 + 3s + 2}$$

Then

$$y(t) = L^{-1} \{ f(t) \} = L^{-1} \left\{ \frac{3}{s^2 + 3s + 2} \right\}$$
$$= L^{-1} \left\{ \frac{3}{(s+1)(s+2)} \right\}$$

ocw.utem.edu.my

Let
$$Y(s) = F(s)G(s) = \frac{3}{(s+1)(s+2)}$$

Now choose

$$F(s) = \frac{3}{s+2}, G(s) = \frac{1}{s+1}$$

Then

$$f(t) = L^{-1} \{ F(s) \} = L^{-1} \left\{ \frac{3}{s+2} \right\} = 3e^{-2t}$$

$$g(t) = L^{-1} \{G(s)\} = L^{-1} \left\{ \frac{1}{s+1} \right\} = e^{-t}$$

ocw.utem.edu.my

So

$$f(\tau) = 3e^{-2\tau}, g(t-\tau) = e^{-(t-\tau)}$$

Determine y(t) by using the convolution theorem:

$$y(t) = L^{-1} \{Y(s)\} = L^{-1} \{F(s)G(s)\}$$

$$= \int_{0}^{t} f(\tau)g(t-\tau)d\tau$$

$$= \int_{0}^{t} 3e^{-2\tau} \cdot e^{-(t-\tau)} d\tau$$

$$= \int_{0}^{t} 3e^{-t} \cdot e^{-\tau} d\tau$$

ocw.utem.edu.my

$$= 3e^{-t} \left(-e^{-\tau} \right)_0^t$$

$$= 3e^{-t} \left(-e^{-t} - (-e^{-0}) \right)$$

$$= 3\left(e^{-t} - e^{-2t} \right)$$

*You may double check your answer by solving the homogeneous equation with characteristic equation as well.

ocw.utem.edu.my

Example 3.34:

Solve following IVP by using the Laplace transform:

$$\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + y = t, \quad y(0) = 0, \ y'(0) = 0$$

ocw.utem.edu.my

Solution:

$$L\left\{\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y\right\} = L\{t\}$$

$$y(0) = 0, y'(0) = 0$$

$$s^{2}Y(s) - sy(0) - y'(0) + 2(sY(s) - y(0)) + Y(s) = \frac{1}{s^{2}}$$

$$s^{2}Y(s) - s(0) - 0 + 2(sY(s) - 0) + Y(s) = \frac{1}{s^{2}}$$

$$(s^2 + 2s + 1)Y(s) = \frac{1}{s^2}$$

$$Y(s) = \frac{1}{s^2(s^2 + 2s + 1)} = \frac{1}{s^2(s + 1)^2}$$

ocw.utem.edu.my

Then

$$y(t) = L^{-1} \{ f(t) \} = L^{-1} \left\{ \frac{1}{s^2 (s+1)^2} \right\}$$

Let

$$Y(s) = F(s)G(s) = \frac{1}{s^2(s+1)^2}$$

Choose

$$F(s) = \frac{1}{(s+1)^2}, G(s) = \frac{1}{s^2}$$

ocw.utem.edu.my

Then

$$f(t) = L^{-1} \{ F(s) \} = L^{-1} \left\{ \frac{1}{(s+1)^2} \right\} = te^{-t}$$

$$g(t) = L^{-1} \{G(s)\} = L^{-1} \left\{ \frac{1}{s^2} \right\} = t$$

So

$$f(\tau) = te^{-\tau}, g(t-\tau) = t-\tau$$

ocw.utem.edu.my

Determine the y(t) by using the convolution theorem:

$$y(t) = L^{-1} \{Y(s)\} = L^{-1} \{F(s)G(s)\}$$

$$= \int_0^t f(\tau)g(t-\tau)d\tau$$

$$= \int_0^t \tau e^{-\tau} \cdot (t-\tau)d\tau$$

$$= \int_0^t t\tau e^{-\tau} d\tau - \int_0^t \tau^2 e^{-\tau} d\tau$$

ocw.utem.edu.my

$$= (-t\tau e^{-\tau} - te^{-\tau})_0^t - (-\tau^2 e^{-\tau} - 2\tau e^{-\tau} - 2e^{-\tau})_0^t$$

$$= (-t^2 e^{-t} - te^{-t} - (-te^0)) + (t^2 e^{-t} + 2te^{-t} + 2e^{-t} - 2)$$

$$= te^{-t} + 2e^{-t} + t - 2$$

ocw.utem.edu.my

Exercise 3.13

Find the solution for

$$\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 4y = t^2, \quad y(0) = 0, \ y'(0) = 0$$

by using the Laplace transform.

Answer:

$$y(t) = -e^{-2t} \left(\frac{t}{4} + \frac{3}{8} \right) + \frac{t^2}{4} - \frac{t}{2} + \frac{3}{8}$$

OPENCOURSEWARE ocw.utem.edu.my

3.4.2 Solving a transfer function

ocw.utem.edu.my

A transfer function of a control system models the output signal for all possible input values.

The input, X(s) and the output Y(s) can be related by a

transfer function

$$H(s) = \frac{Y(s)}{X(s)}$$

$$\xrightarrow{X(s)} \qquad \qquad \text{Transfer function, } H(s) \qquad \xrightarrow{Y(s)}$$

ocw.utem.edu.my

In the time domain, the input and the output of a control system are denoted as x(t) and y(t) respectively

The inverse Laplace transform

$$(h(t) = L^{-1}\{H(s)\})$$

is called the impulse response.

In Laplace transform, all initial conditions are assumed to be zero.

ocw.utem.edu.my

Example 3.35:

Given the transfer function of a system is given by

$$H(s) = \frac{s}{s^2 + 4}$$

with the input signal $X(s) = \frac{1}{s}$. Find the output response y(t) for the system.

ocw.utem.edu.my

Solution:

Given the transfer function is

$$H(s) = \frac{s}{s^2 + 4} = \frac{Y(s)}{\left(\frac{1}{s}\right)} \qquad H(s) = \frac{Y(s)}{X(s)}$$

So

$$Y(s) = \frac{s}{s^2 + 4} \cdot \frac{1}{s}$$

Now use convolution theorem to find y(t), we choose

$$F(s) = \frac{s}{s^2 + 4}, G(s) = \frac{1}{s}$$

ocw.utem.edu.my

So

$$f(t) = L^{-1}{F(s)} = L^{-1}{\frac{s}{s^2 + 4}} = \cos 2t$$

$$g(t) = L^{-1} \{G(s)\} = L^{-1} \left\{ \frac{1}{s} \right\} = 1$$

Then

$$f(\tau) = \cos 2\tau, g(t-\tau) = 1$$

ocw.utem.edu.my

Determine the y(t) by using the convolution theorem:

$$y(t) = \int_0^t \cos 2\tau \cdot 1 \, d\tau \qquad \int_0^t f(\tau)g(t-\tau)d\tau$$
$$= \left[\frac{\sin 2\tau}{2}\right]_0^t$$
$$= \frac{1}{2}(\sin 2t - \sin 0) = \frac{1}{2}\sin 2t$$

ocw.utem.edu.my

Example 3.36:

Given the input x(t) and the output y(t) of an electronic system can be related by

$$y'' + 4y = 2x(t).$$

Determine the transfer function H(s) and the impulse response h(t) for the system.

ocw.utem.edu.my

Solution:

$$L\{y'' + 4y\} = 2L\{x(t)\}$$

$$s^{2}Y(s) - sy(0) - y'(0) + 4Y(s) = 2X(s)$$

$$s^{2}Y(s) - s(0) - 0 + 4Y(s) = 2X(s)$$

Initial conditions are assumed to be zero in Laplace transform

$$(s^{2}+4)Y(s) = 2X(s)$$

$$H(s) = \frac{Y(s)}{X(s)} = \frac{2}{s^{2}+4}$$

Transfer function

ocw.utem.edu.my

The impulse response h(t) for the system

$$h(t) = L^{-1} \{ H(s) \}$$

$$= L^{-1} \left\{ \frac{2}{s^2 + 4} \right\}$$

$$= \sin 2t$$

ocw.utem.edu.my

Exercise 3.14

The input x(t) and output y(t) of an electronic system can be represented by

$$y'' + 4y' + 5y = x(t)$$

Find the transfer function H(s) and the impulse response h(t) for the system.

Answer:
$$H(s) = \frac{1}{(s^2 + 4s + 5)}, h(t) = e^{-2t} \sin t$$

OPENCOURSEWARE ocw.utem.edu.my

- Are you able to
- use Laplace transform to solve the initial value problem
- ii. use Laplace transform to solve the transfer function in the control system

ocw.utem.edu.my

References

Edwards C. H., Penny D.E. & Calvis D. (2016). Differential Equations and Boundary Value Problems, 5thEdition. Pearson Education Inc..

Zill, D. G. (2017). Differential Equations with Boundary-Value Problems. Cengage Learning Inc

OPENCOURSEWARE ocw.utem.edu.my

Thank You

Questions & Answer?

