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SOLVING HOMOGENEOUS EQUATIONS 

WITH CONSTANT COEFFICIENTS



Lesson outcomes

Upon completion of this week lesson, students should be 

able to:

i. describe the basic concept of homogeneous equation

ii. describe the three possible solutions of homogeneous 

equation

iii. find the solution for homogeneous equations



CHAPTER 2

Second Order Linear Differential Equations

❑ Solving homogeneous equations with constant coefficients 

- real and distinct roots

- real and repeated roots

- complex conjugate roots

❑ Solving nonhomogeneous equations with

- undetermined coefficients method

- variation of parameters method



2.1  Solving Homogeneous Equations with  

Constant Coefficients



General form of the second-order linear differential equation:

where a, b, c are constants.

If 𝑓 𝑥 = 0, the second order linear differential equation is

homogeneous.
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The homogeneous equation

or

has a characteristic equation as follows:
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where the derivatives are replaced by

y’’ → m2,  y’ → m1,  y  → mo.



Since the characteristic equation is a quadratic equation, there

are 3 possible cases for the roots, i.e. when

i. 𝑏2 − 4𝑎𝑐 > 0, real and distinct roots

ii. 𝑏2 − 4𝑎𝑐 = 0, real and repeated roots

iii. 𝑏2 − 4𝑎𝑐 < 0, complex conjugates roots



The general solution for a characteristic equation with real and

distinct roots is
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A and B are some constants.

Here m1  m2 are two real and distinct roots .



Example 2.1

Find the general solution of
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The characteristic equation for the homogeneous equation is

This characteristic equation can be factorised as

(m − 3) (m + 2)=0.

Hence m1 = 3, m2 = −2.

As a consequence, the general solution for the homogeneous

equation is

Solution



Answer:

Exercise 2.1

Find the general solution of
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Example 2.2

Find the solution of

where the initial conditions are given as 
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Solution

Characteristic equation:
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By referring to the initial conditions, we determine the constants 

A and B :

Now find the first derivative of y(x), we have
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The general solution for a characteristic equation with real but

repeated roots is

( ) mxy A Bx e= +

where A and B are some constants.

Here m is real but repeated root, that is, m = m1 = m2.



Example 2.3

Find the general solution of
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The characteristic equation for the homogeneous equation is

This characteristic equation can be factorised as

(m − 1) (m  − 1)=0.

Hence m = 1. 

As a consequence, the general solution for the homogeneous

equation is

Solution



Example 2.4

Find the solution of

where the initial conditions are given as 
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Solution

Characteristic equation:
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By referring to the initial conditions, we determine the constants A and

B :

Now find the first derivative of y(x), we have
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Find the solution of

where the initial conditions are given as

Answer:

Exercise 2.2
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The general solution for a characteristic equation with complex

conjugates roots is

( )cos sinxy e A x B x  = +

where A and B are some constants.

Here .m i = 



Example 2.5

Find the general solution of
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Characteristic equation: 

Find the roots of the characteristic equation:

Hence

Solution

( )2( ) cos sinxy x e A x B x−= +



Example 2.6

Find the solution of

where the boundary conditions are given as 

2

2
4 0

d y
y

dx
+ =

(0) 1, 1.
4

y y
 

= = − 
 



2 4 0m + =

2

2 2 2

4 0

4 4( 1) 4

2

0, 2

m

m i

m i

 

+ =

= − = − =

= 

 = =

Characteristic equation: 

Find the roots of the characteristic equation:

Hence

Solution
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By referring to the boundary conditions:
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Find the solution of

where the boundary conditions are given as

Answer:

Exercise 2.3
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Are you able to

i. describe the basic concept of homogeneous equation?

i. describe the three possible solutions of homogeneous

equation?

ii. find the solution for a homogeneous equation now?
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Thank You

Questions & Answer?


