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CONTENTS

4.1 Undamped Forced Vibration
4.2 Damped Forced Vibration

LEARNING OBJECTIVES

1. Derive the Frequency Response Function

2. Solve vibration problem due to damped
forced vibration.
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Vibration caused by force exciting the structure

Force from
engine

Excitation from road input



Force excitation from propeller

=

Force excitation from
aerodynamic flow



Forced vibration

0 "

Press and let go Give constant
frequency

Free vibration

2T [wd 1 27r/wf

N \AAAAAA
IR

Vibration decays to zero Vibration keeps going forever,
as long as the force still exists
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Equation of motion:

f(t) o B
! mi(t) + kx(t) = f(¢)

l |
m-— | x(t)
Force f(t) can be:
* Time harmonic - rotating machine
k * Transient (finite duration) - bump or impact

« Random (unpredictable) - wind load

PEETEEETETTTTT We will focus on time harmonic excitation:

- f(t) = Fsin(wt + ¢)
I




F(t) "\,
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This gives steady-state
vibration amplitude:

For harmonic force, equation of motion:

mx(t) + kx(t) = F sin(wt + ¢)

|
\

Response wiil also be harmonic:

x(t) = Xsin(wt + ¢)

N

Magnitude of x(t)

X =

F

k — w?m
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F F 1
X — — —
k \1—(w/wp)?

k —w?m

Excite this system with whole Characteristic of the SDOF system
frequency of excitation when excited with dynamic force
X
) X| N
!
m x(t) F

i >
[T T W = W, frequency, W



Static force (w = 0):

F
X — E
X]
Dynamic force: T
L X dependson w F
— k

f W= wp:

X becomes very LARGE!!

I | ~ S

W = Wh frequency, W
RESONANCE




Time response of undamped vibration at resonance.

x(t) \

~




When the frequency of the voice from
a Soprano singer matches
the natural frequency of the glass.
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As a vibration engineer, you job is

to ensure that a designed structure has
natural frequency away from

the frequency of the excitation force.
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Example 4.1

Calculate the magnitude of the Frequency Response Function (FRF)!

Use Xj as the generalised coordinate.

I
NG

[
4

1

T

F sin(wt)

Use the D’Alembert principle

L 3L
The external moment at point O: Z(Mext)o = —kxo <§> + Fsin(wt) (I)

. [
The inertial moment at point O: Z(Mint)o = JO + mx, (Z)
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The D'Alembert principle:
Z(Mext)o — Z(Mint)o
L . 3L : . (L
_kX2 <§> —+ FSln(Wt) (T) = JO —+ MX, (Z)

Re-arrange:




After substitution:

() () ()= (2

Simplified:

1
( L62J | m) X1 + 2kx; = 9F sin(wt)

We are interested in steady-state response, we can use C.E. N.

The force can be expressed as f(t) = Fe/“! and substitute: x1(t) = Xq e/t

1
_w2( oJ | m> X1 +2kX: =9F | (4




From (*), the Frequency Response Function (FRF):

The displacement per unit force.

This FRF is called RECEPTANCE.
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Equation of motion:

' ¢ mi(t) + cx(t) + kx(t) = (t)
o *
m X))
Homo£eneous Partilcular
solution, Xp solution, X,
k C R

Xh\v%aﬁﬁ-—;' >
17T time

%\AAAAAAAANAAAAAAI,
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X —|—th ’\/\/\/\/\/\/\/\/\El\/\/\/\l\l\l g
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—— Steady-state




f( t) /\J Equation of motion:

l mx(t) + cx(t) + kx(t) = f(t)
m x(t) I

We are interested in the steady-state response.

K C For convenience, we can use the
complex exponential notation:

[IETEETTEEETT

Cf(t) = FeYt, x(t) = Xevt

] |

Complex amplitude of 7(t) Complex amplitude of x(t)




f‘( t) /\J We obtain ratio of displacement to force:

S X 1

m x(t) - F k— mw?+ jwc

Using w,% — k/m and C = 2Cw,,m

We can have another expression:

[T TR

*) X — 1 1 ‘[
o Foi(omreE)




The magnitude of * as a function of frequency:

- | - B f(t)
X 1/k !
— | = x(t)
F B 2_ 2 2
W oy,
]- T - _|_ 4C2 _2 k C
\ Whn W
i i PEEEEETrrrrrr
Usually called Frequency Response Function (FRF)
Low frequency: w < W, = ‘X/F‘ — ]_/k Stiffness controlled

Resonance: W= WwWh = ‘X/F‘ — 1/(2Ck) Damping controlled

High frequency: v > w, = ‘X/F‘ — ]_/(wzm) Mass controlled



FRF graph

Log §|A w<Kwy,= |X/F
1 w=uw, = |X/F
% """"""""""""""""""" w > w, = | X/F
1
k
1/(w2m)
Stiffness
controlled
>
W = Wp Log W

— 1/(2¢k)
— 1/(w?m)



Stiffness controlled

| X

Log| |A

—

Increase k

X~ | =

W = Wp Log W



Damping controlled

Log A

| X

Increase C

W = Wp Log W



Mass controlled

Log A

| X

Increase m

W = Wp Log W



How to know the phase between the force and the response?

From (*)
_ > )
X T
/=] =¢=—tan"? —n___
F W
1 - [ =
_ Wn/) _
For small C:
w<Lw,= ¢~ —tan 1(0) =0
Ww=w,= ¢~ —tan *(o0) = —90°

w > w, = ¢ ~ tan"(0) = —180°

Note: If z=1/(a+jb), the phaseis ¢ = —tan"Y(b/a)



Phase graph
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Example 4.2

A 50 kg rotating machine is known to have vertical r.m.s velocity of 8 mm/s.
The machine runs at operating frequency of 800 RPM. The machine is rested on
rubber isolator with total stiffness constant of 10,000 N/m.

How to effectively reduce the vibration of the machine?

x(t)

Isolator

«<— Rigid foundation
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The operating frequency of the machine:

f:@:sz
60

w=2nf =2nw(15) = 94.2 rad/s

The natural frequency:

W = A/ L \/10'000 = 14.14 rad/s
m 50

The condition: W > W, (Mass controlled)

Thus the vibration can be effectively reduced by increasing the mass of the machine.



Additional Resources

Interact with my animations:
http://www.azmaputra.com/animations/

AZMA
PUTRA

My white-board animation videos:
http://www.youtube.com/c/AzmaPutra-channel Yo u Tu he

Vector graphics in this note (Pages 3, 4, 11, 14) are credit to www. freepik.com
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