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4.1 Undamped Forced Vibration

4.2 Damped Forced Vibration

LEARNING OBJECTIVES

1. Derive the Frequency Response Function

2. Solve vibration problem due to damped 
    forced vibration.
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Vibration caused by force exciting the structure



Force excitation from propeller

Force excitation from 
aerodynamic flow
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UNDAMPED FORCED VIBRATION

4.1



Equation of motion:

Force can be: 

• Time harmonic - rotating machine
• Transient (finite duration) - bump or impact
•  Random (unpredictable) - wind load

We will focus on time harmonic excitation:
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f (t) = F sin(!t + �)

mẍ(t) + kx(t) = f (t)
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For harmonic force, equation of motion:

Response will also be harmonic:
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x(t) = X sin(!t + �)

mẍ(t) + kx(t) = F sin(!t + �)

This gives steady-state 
vibration amplitude:
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Characteristic of the SDOF system 
when excited with dynamic force



Static force (               ):

Dynamic force:
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If

becomes very LARGE!!

:

1

frequency,

F

k

|X |

!! = !n

! = 0

X !

! = !n

X

X =
F

k

RESONANCE
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Time response of undamped vibration at resonance.



When the frequency of the voice from  
a Soprano singer matches  
the natural frequency of the glass.



It happened in 1940, when resonance 
from the wind destroyed this massive 
structure - Tacoma Bridge, 
Washington, USA.



As a vibration engineer, you job is  
to ensure that a designed structure has 
natural frequency away from  
the frequency of the excitation force.
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Calculate the magnitude of the Frequency Response Function (FRF)!
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Use       as the generalised coordinate.x1

Use the D’Alembert principle
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Example 4.1



The D’Alembert principle:
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After substitution:
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We are interested in steady-state response, we can use C.E. N. 

and substitute: x1(t) = X1e
j!tThe force can be expressed as f (t) = Fe j!t
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From (*), the Frequency Response Function (FRF):
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The displacement per unit force.

This FRF is called RECEPTANCE.



DAMPED FORCED VIBRATION

4.2



Equation of motion:

Homogeneous  
solution,       
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mẍ(t) + cẋ(t) + kx(t) = f (t)

Particular  
solution,xh xp

time

time
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Steady-state



Equation of motion:

We are interested in the steady-state response.

m

f (t)

x(t)

ck

mẍ(t) + cẋ(t) + kx(t) = f (t)

For convenience, we can use the  
complex exponential notation:

f (t) = Fe j!t x(t) = Xe j!t,

Complex amplitude of x(t)Complex amplitude of f (t)



We obtain ratio of displacement to force:

Using
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We can have another expression:
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Low frequency:

Resonance:

High frequency:

Stiffness controlled

Damping controlled

Mass controlled
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! ⌧ !n ) |X/F | = 1/k

! � !n ) |X/F | = 1/(!2m)

The magnitude of       as a function of frequency:*

Usually called Frequency Response Function (FRF)
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FRF graph
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How to know the phase between the force and the response?

From (*)

Note: If z = 1/(a+ jb) , the phase is � = � tan�1(b/a)

! � !n ) � ⇡ tan�1(0) = �180�
! = !n ) � ⇡ � tan�1(1) = �90�
! ⌧ !n ) � ⇡ � tan�1(0) = 0

For small      :⇣



Phase graph
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A 50 kg rotating machine is known to have vertical r.m.s velocity of 8 mm/s.  
The machine runs at operating frequency of 800 RPM. The machine is rested on 
rubber isolator with total stiffness constant of 10,000 N/m.  

How to effectively reduce the vibration of the machine?

Example 4.2

x(t)

Isolator

Rigid foundation



The operating frequency of the machine:

f =
900

60
= 15 Hz

! = 2⇡f = 2⇡(15) = 94.2 rad/s

The natural frequency:
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50
= 14.14 rad/s

The condition: ! � !n

Thus the vibration can be effectively reduced by increasing the mass of the machine.

(Mass controlled)



Interact with my animations:

Additional Resources

http://www.azmaputra.com/animations/

My white-board animation videos:
http://www.youtube.com/c/AzmaPutra-channel 

Vector graphics in this note (Pages 3, 4, 11, 14) are credit to www. freepik.com
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