

MECHANICAL VIBRATION

BMCG 3233

CHAPTER 4: HARMONIC FORCED VIBRATION (PART 1)

ASSOC. PROF. DR. AZMA PUTRA

Centre for Advanced Research on Energy, UTeM azma.putra@utem.edu.my

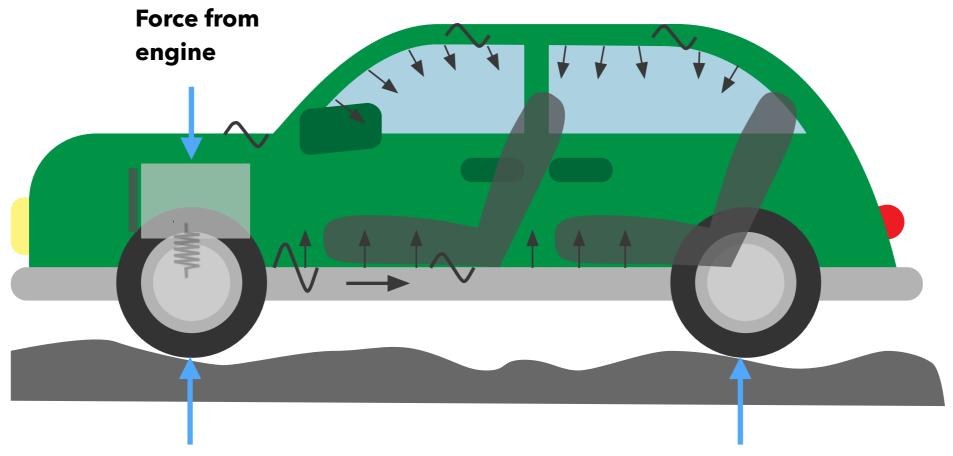
4.1 Undamped Forced Vibration

4.2 Damped Forced Vibration

LEARNING OBJECTIVES

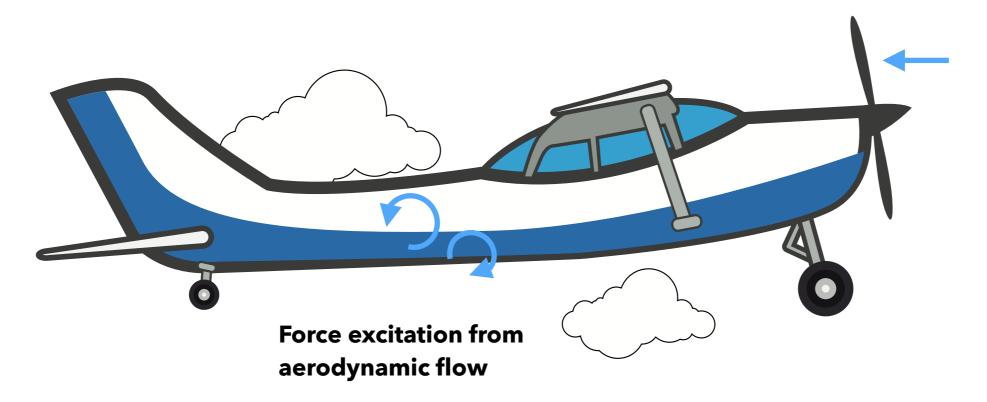
- 1. Derive the Frequency Response Function
- 2. Solve vibration problem due to damped forced vibration.

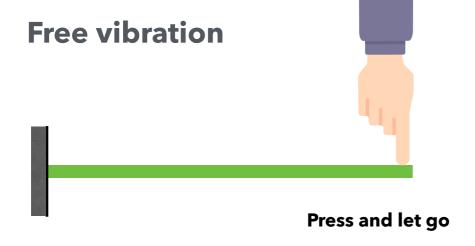
Vibration caused by force exciting the structure

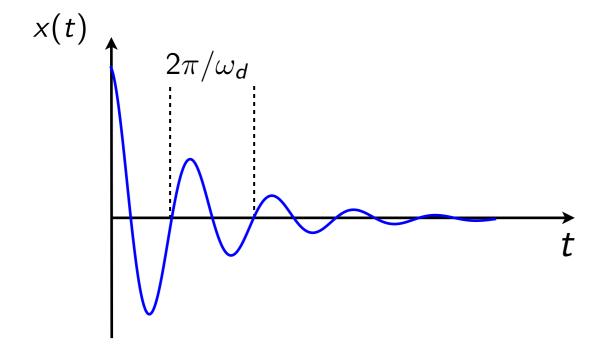


Excitation from road input

Force excitation from propeller







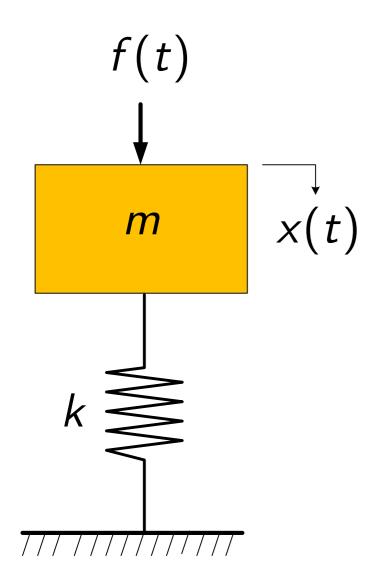
Vibration decays to zero

UTeM



Vibration keeps going forever, as long as the force still exists

UNDAMPED FORCED VIBRATION



Equation of motion:

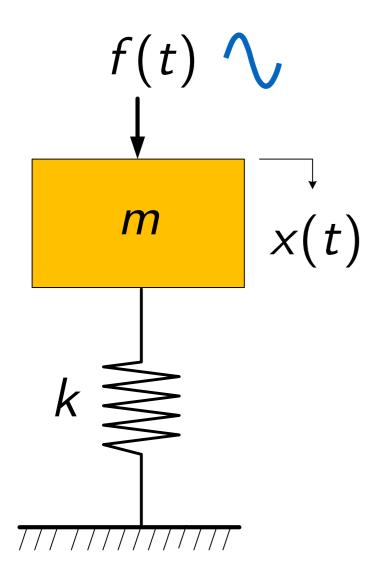
$$m\ddot{x}(t) + kx(t) = f(t)$$

Force f(t) can be:

- Time harmonic rotating machine
- Transient (finite duration) bump or impact
- Random (unpredictable) wind load

We will focus on time harmonic excitation:

$$f(t) = F\sin(\omega t + \phi)$$



This gives steady-state vibration amplitude:

For harmonic force, equation of motion:

$$m\ddot{x}(t) + kx(t) = F\sin(\omega t + \phi)$$

Response will also be harmonic:

$$X(t) = X \sin(\omega t + \phi)$$

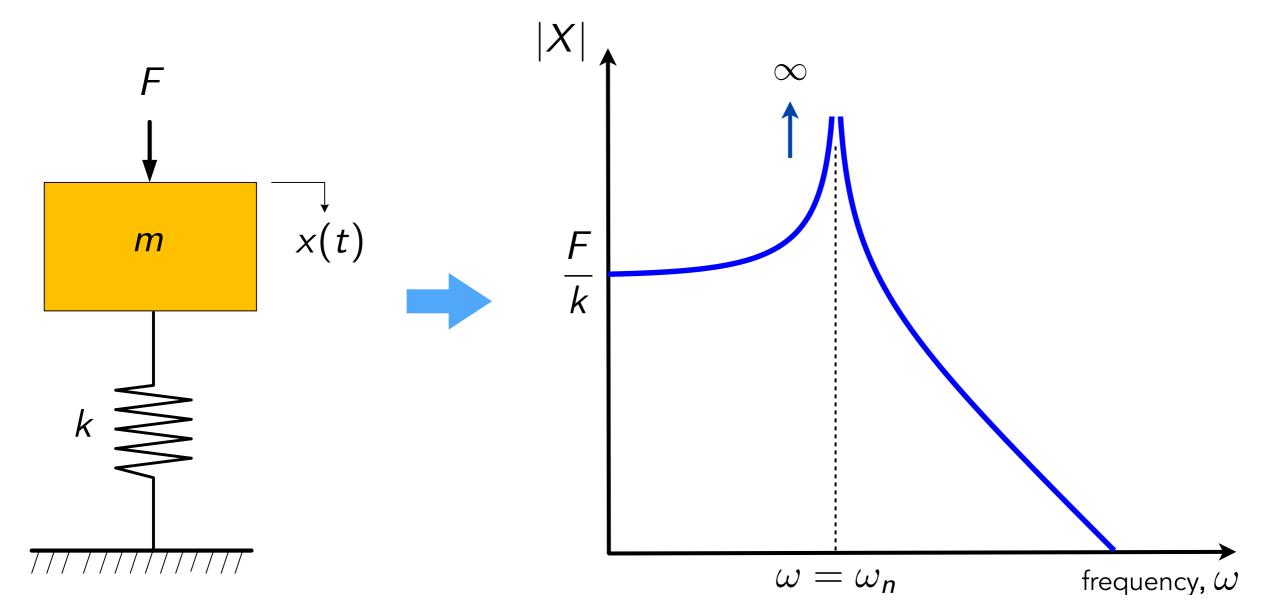
$$Magnitude of x(t)$$

$$X = \frac{F}{k - \omega^2 m}$$

$$X = \frac{F}{k - \omega^2 m} = \frac{F}{k} \left(\frac{1}{1 - (\omega/\omega_n)^2} \right)$$

Excite this system with whole frequency of excitation

Characteristic of the SDOF system when excited with dynamic force



Static force ($\omega=0$):

$$X = \frac{F}{k}$$

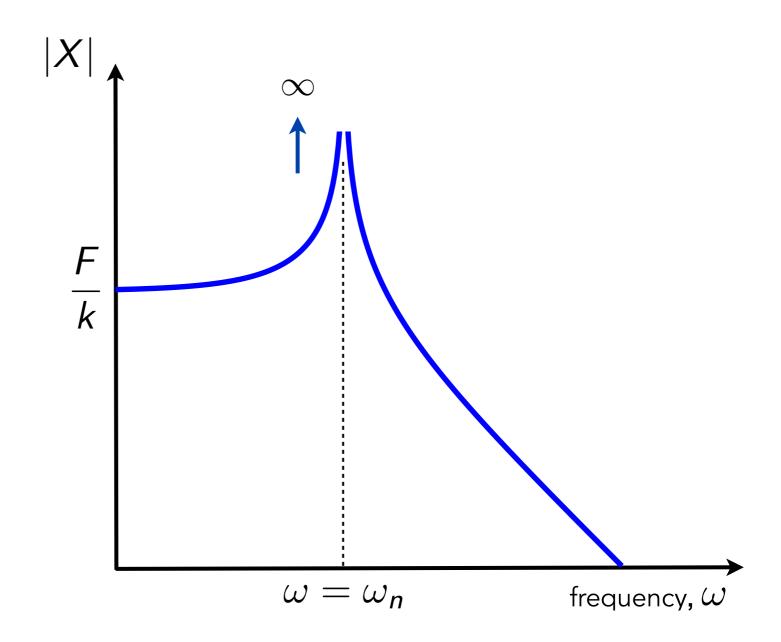
Dynamic force:

X depends on ω

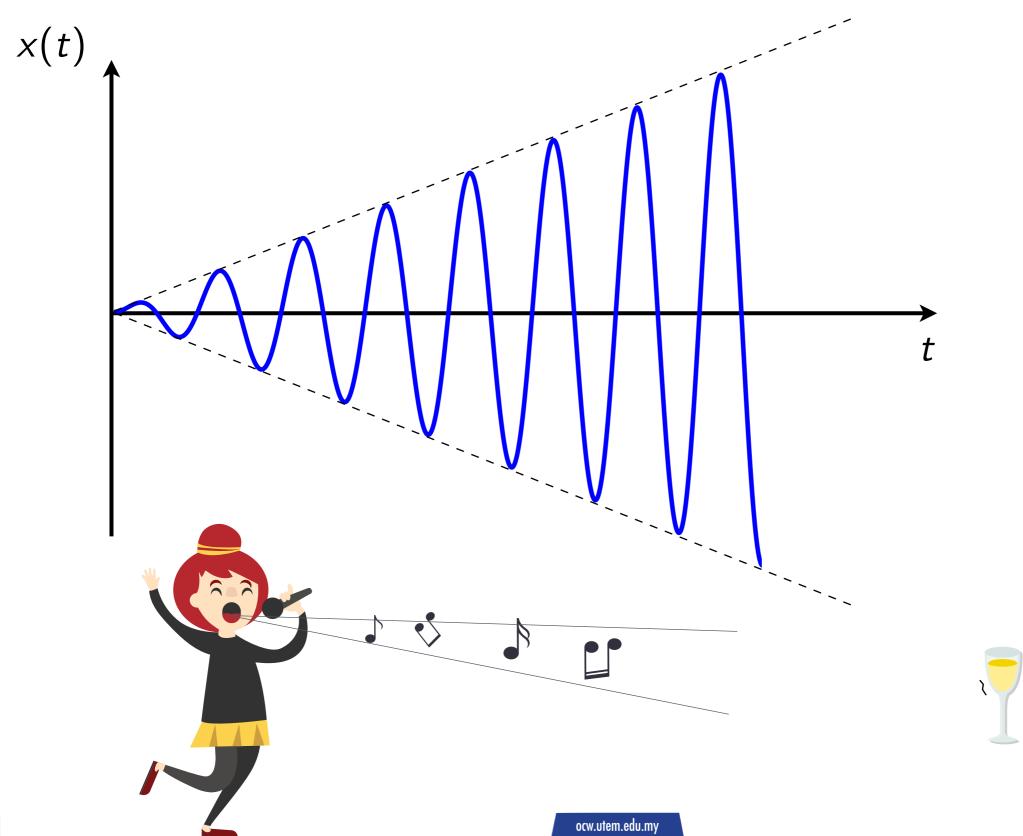
If $\omega = \omega_n$:

X becomes very LARGE!!

RESONANCE



Time response of undamped vibration at resonance.



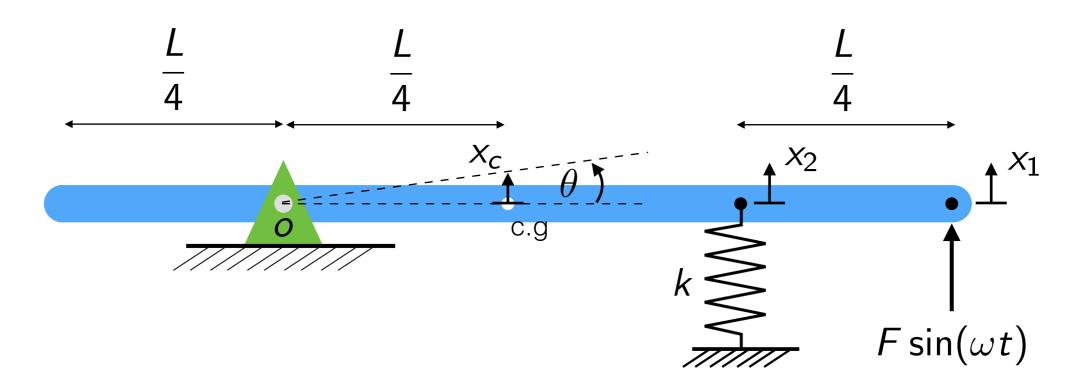
When the frequency of the voice from a Soprano singer matches the natural frequency of the glass.

As a vibration engineer, you job is to ensure that a designed structure has natural frequency away from the frequency of the excitation force.

Example 4.1

Calculate the magnitude of the Frequency Response Function (FRF)!

Use X_1 as the generalised coordinate.



Use the D'Alembert principle

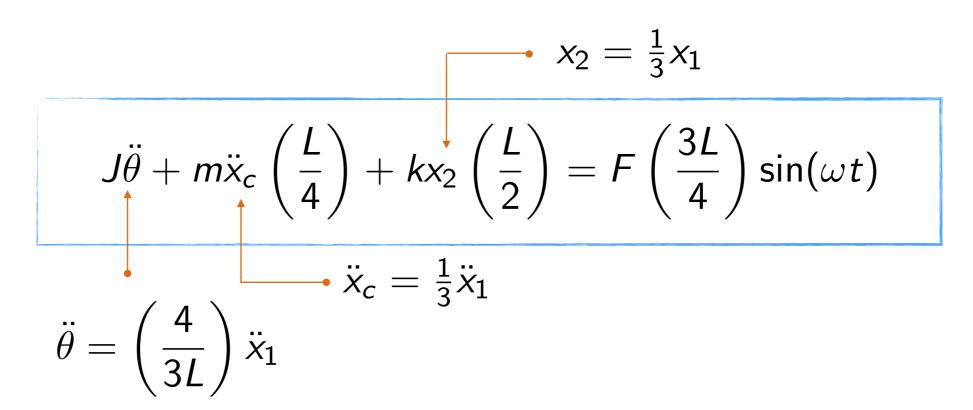
The external moment at point $o: \sum (M_{\rm ext})_o = -kx_2\left(\frac{L}{2}\right) + F\sin(\omega t)\left(\frac{3L}{4}\right)$

The inertial moment at point o: $\sum (M_{\rm int})_o = J\ddot{\theta} + m\ddot{x}_c \left(\frac{L}{4}\right)$

The D'Alembert principle:

$$\sum (M_{\rm ext})_o = \sum (M_{\rm int})_o$$
$$-kx_2 \left(\frac{L}{2}\right) + F \sin(\omega t) \left(\frac{3L}{4}\right) = J\ddot{\theta} + m\ddot{x}_c \left(\frac{L}{4}\right)$$

Re-arrange:



After substitution:

$$\left(\frac{4J}{3L}\right)\ddot{x}_1 + \left(\frac{mL}{12}\right)\ddot{x}_1 + \left(\frac{kL}{6}\right)x_1 = F\left(\frac{3L}{4}\right)\sin(\omega t)$$

Simplified:

$$\left(\frac{16J}{L^2} + m\right)\ddot{x}_1 + 2kx_1 = 9F\sin(\omega t)$$

We are interested in steady-state response, we can use C.E. N.

The force can be expressed as $f(t)=Fe^{j\omega t}$ and substitute: $x_1(t)=X_1e^{j\omega t}$

$$-\omega^2 \left(\frac{16J}{L^2} + m\right) X_1 + 2kX_1 = 9F \tag{*}$$

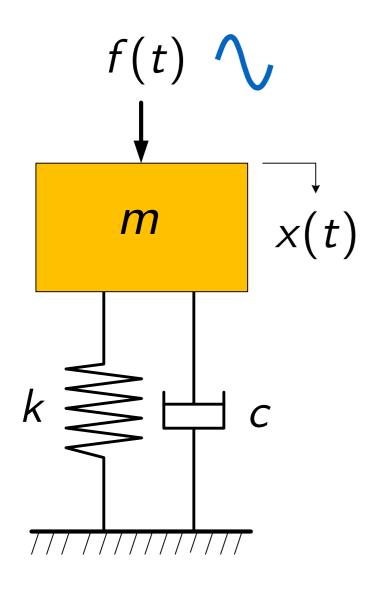
From (*), the Frequency Response Function (FRF):

$$\left|\frac{X_1}{F}\right| = \frac{9}{2k - \omega^2 \left(\frac{16J}{L^2} + m\right)}$$

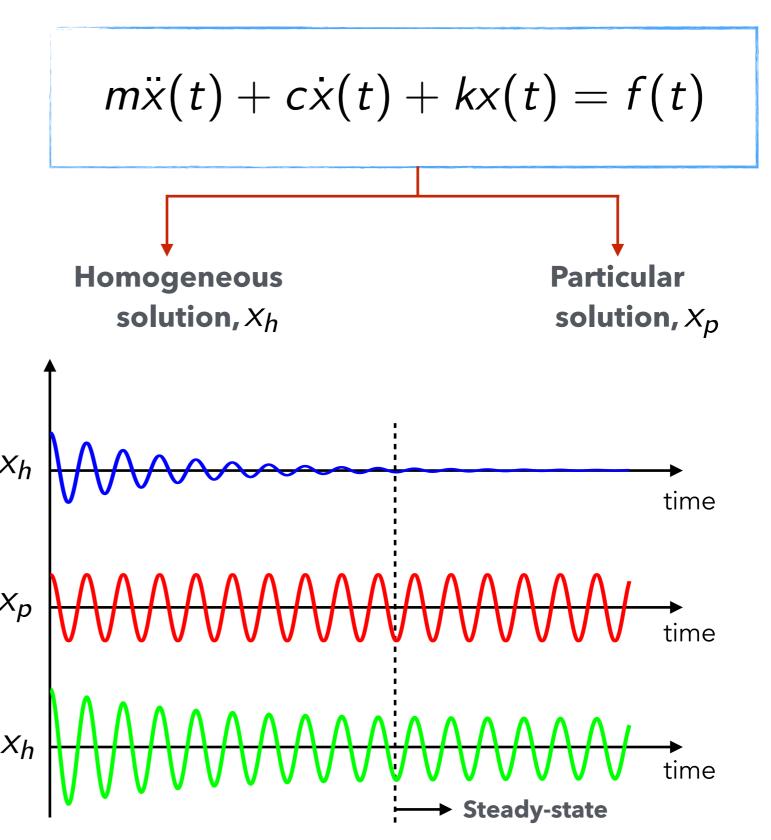
The displacement per unit force.

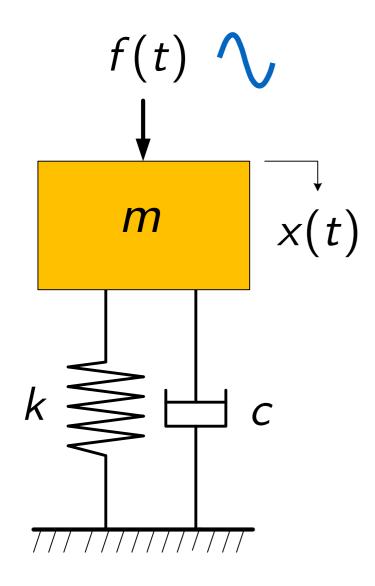
This FRF is called RECEPTANCE.

DAMPED FORCED VIBRATION



Equation of motion:





Equation of motion:

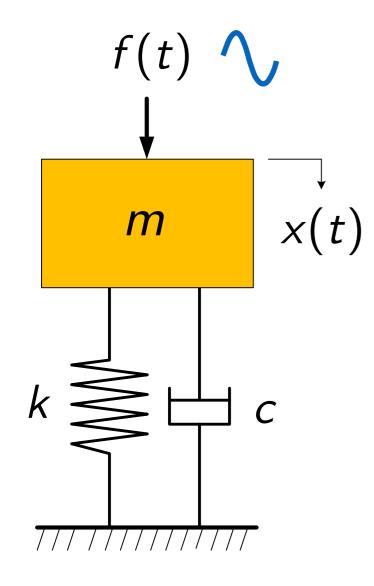
$$m\ddot{x}(t) + c\dot{x}(t) + kx(t) = f(t)$$

We are interested in the steady-state response.

For convenience, we can use the complex exponential notation:

$$f(t) = Fe^{j\omega t}, \quad x(t) = Xe^{j\omega t}$$

Complex amplitude of f(t) Complex amplitude of x(t)



We obtain ratio of displacement to force:

$$\frac{X}{F} = \frac{1}{k - m\omega^2 + j\omega c}$$

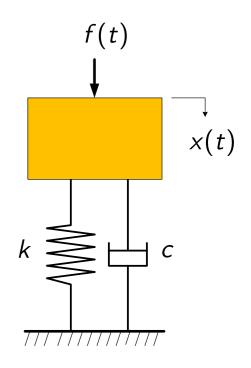
Using
$$\omega_n^2=k/m$$
 and $c=2\zeta\omega_n m$

We can have another expression:

(*)
$$\frac{X}{F} = \frac{1}{k} \left(\frac{1}{1 - (\omega/\omega_n)^2 + j2\zeta\omega/\omega_n} \right)$$

The magnitude of * as a function of frequency:

$$\left|\frac{X}{F}\right| = \frac{1/k}{\sqrt{\left[1 - \left(\frac{\omega}{\omega_n}\right)^2\right]^2 + 4\zeta^2 \frac{\omega^2}{\omega_n^2}}}$$



Usually called Frequency Response Function (FRF)

Low frequency: $\omega \ll \omega_n \Rightarrow |X/F| = 1/k$

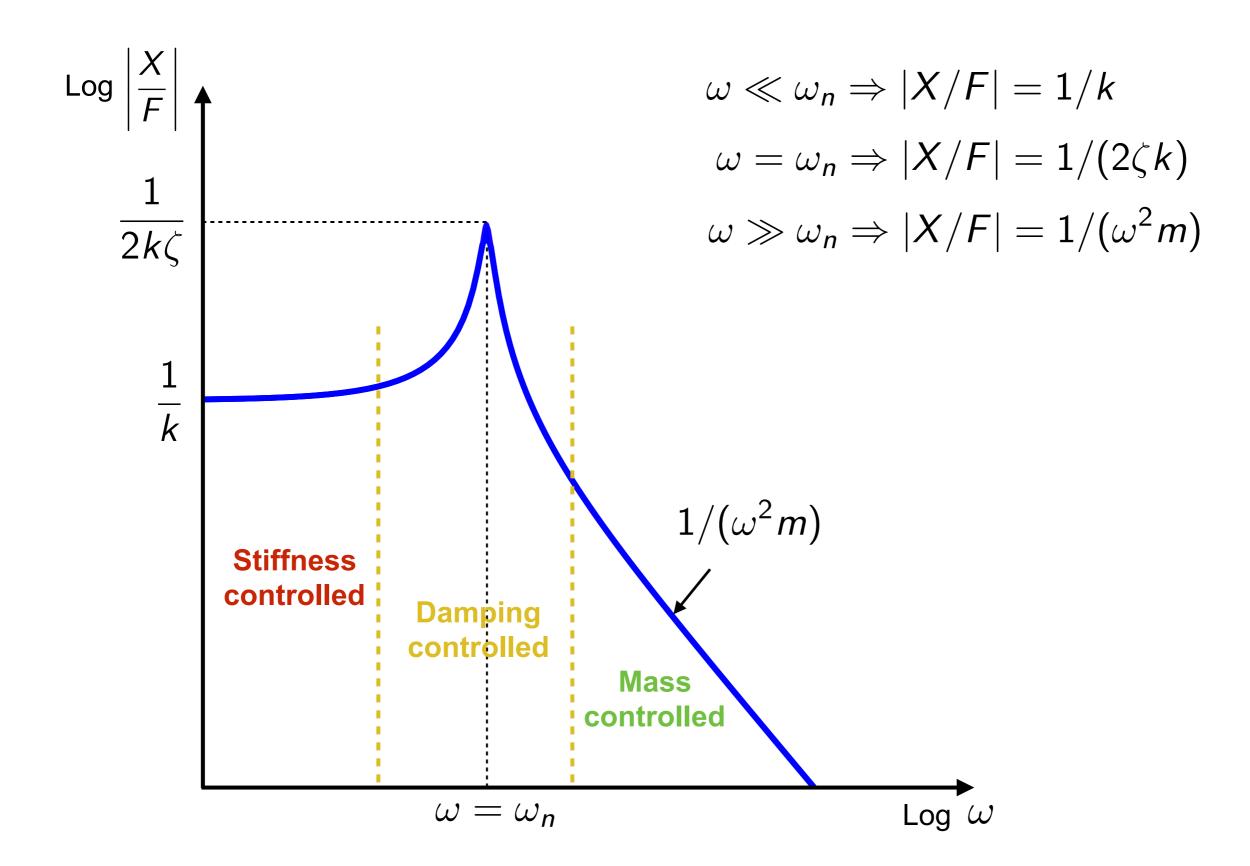
Stiffness controlled

Resonance: $\omega = \omega_n \Rightarrow |X/F| = 1/(2\zeta k)$

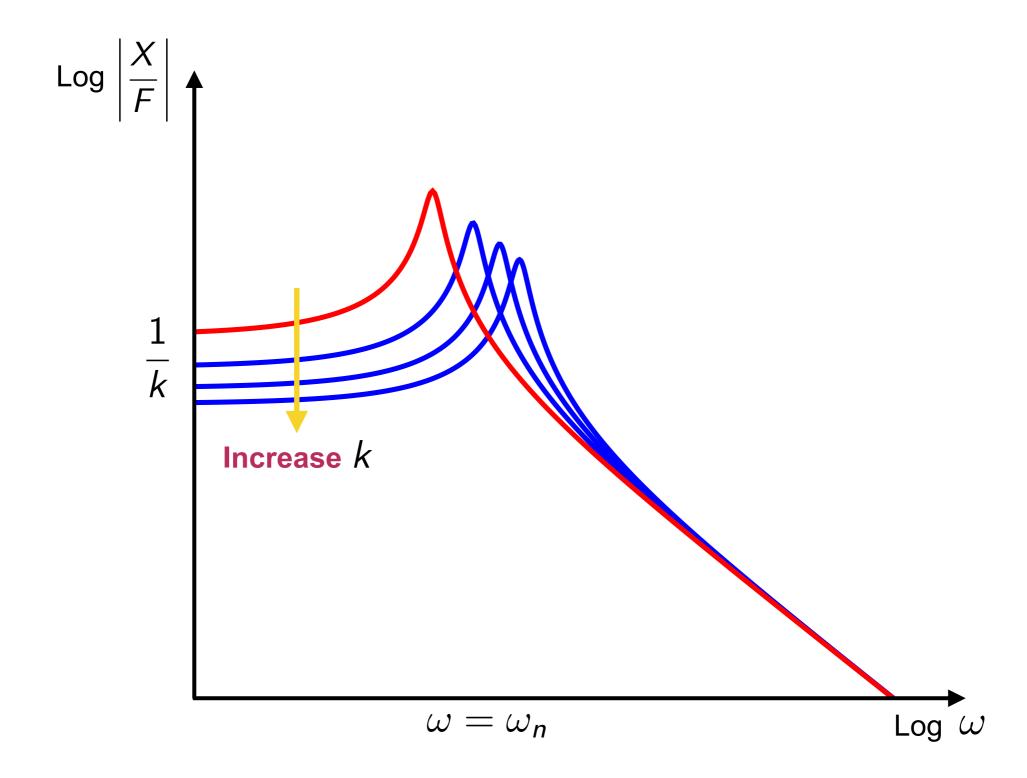
Damping controlled

High frequency: $\omega \gg \omega_n \Rightarrow |X/F| = 1/(\omega^2 m)$ Mass controlled

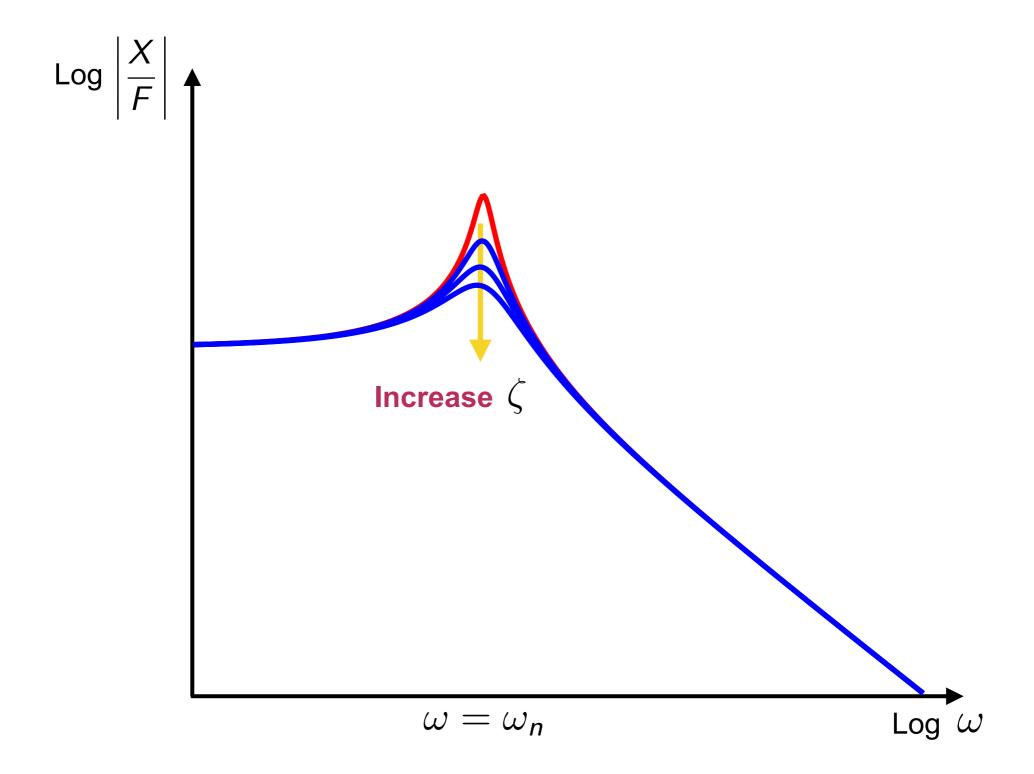
FRF graph



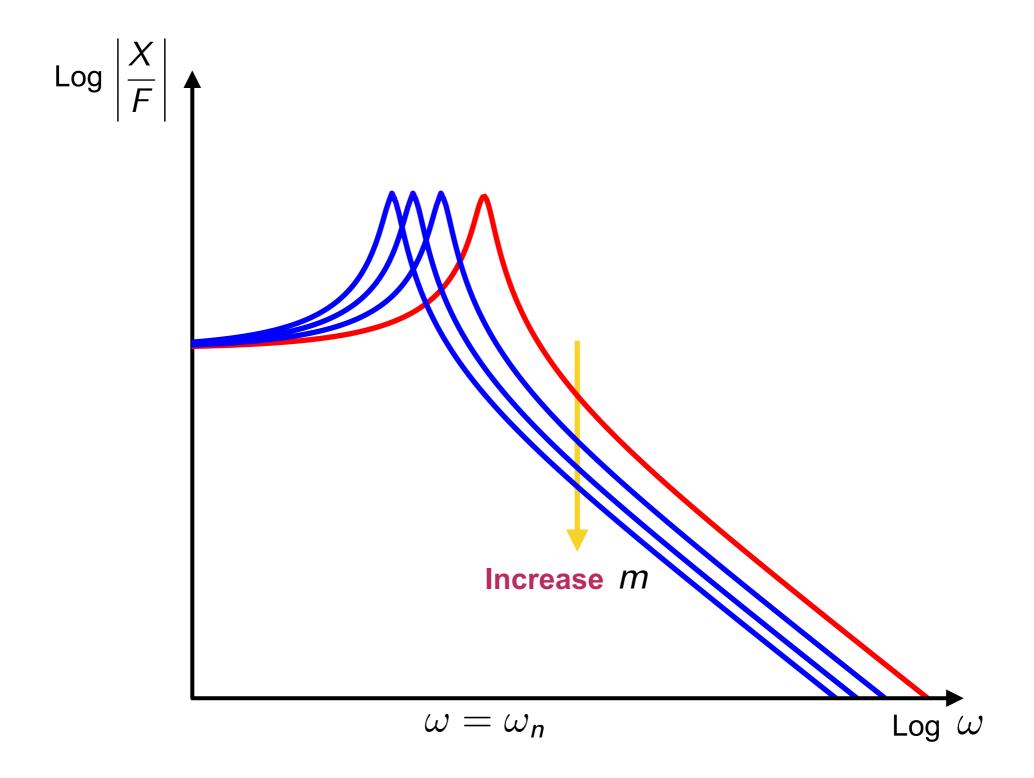
Stiffness controlled



Damping controlled



Mass controlled



How to know the phase between the force and the response?

From (*)

$$\angle \left| \frac{X}{F} \right| = \phi = -\tan^{-1} \left[\frac{\frac{2\zeta\omega}{\omega_n}}{1 - \left(\frac{\omega}{\omega_n}\right)^2} \right]$$

For small ζ :

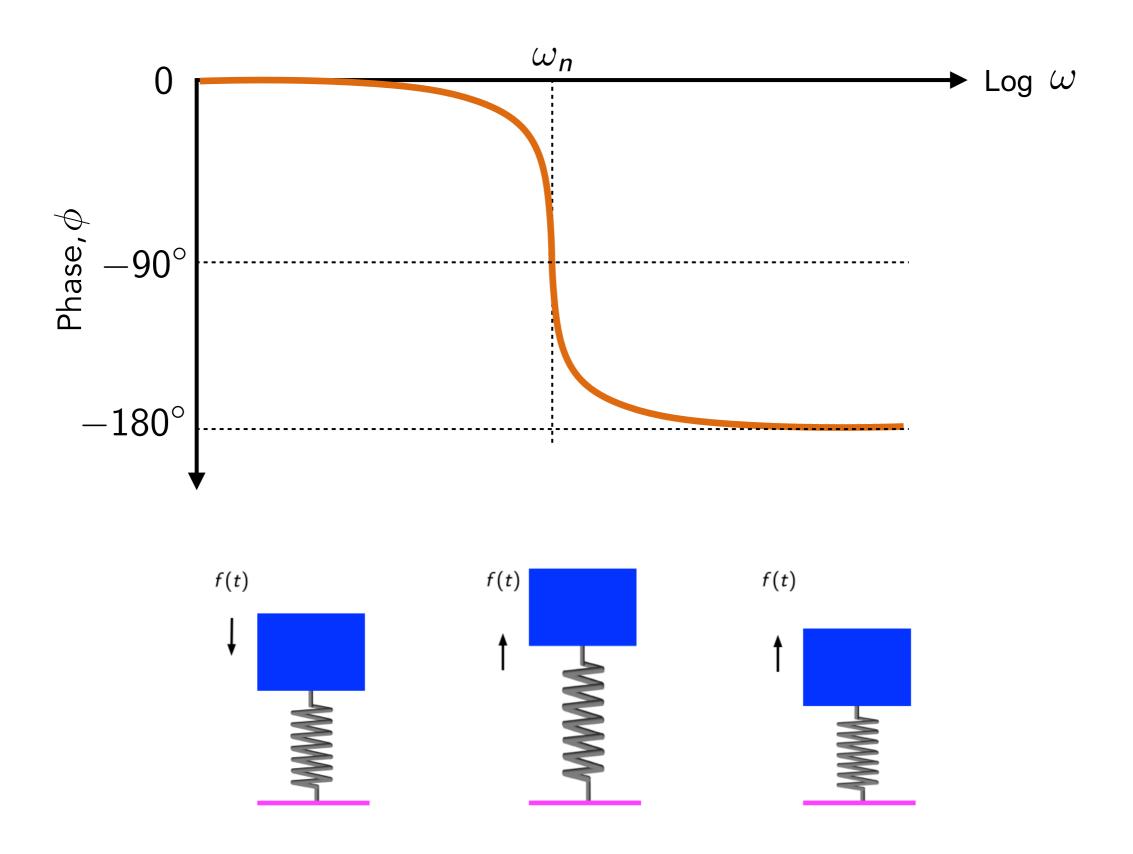
$$\omega \ll \omega_n \Rightarrow \phi \approx -\tan^{-1}(0) = 0$$

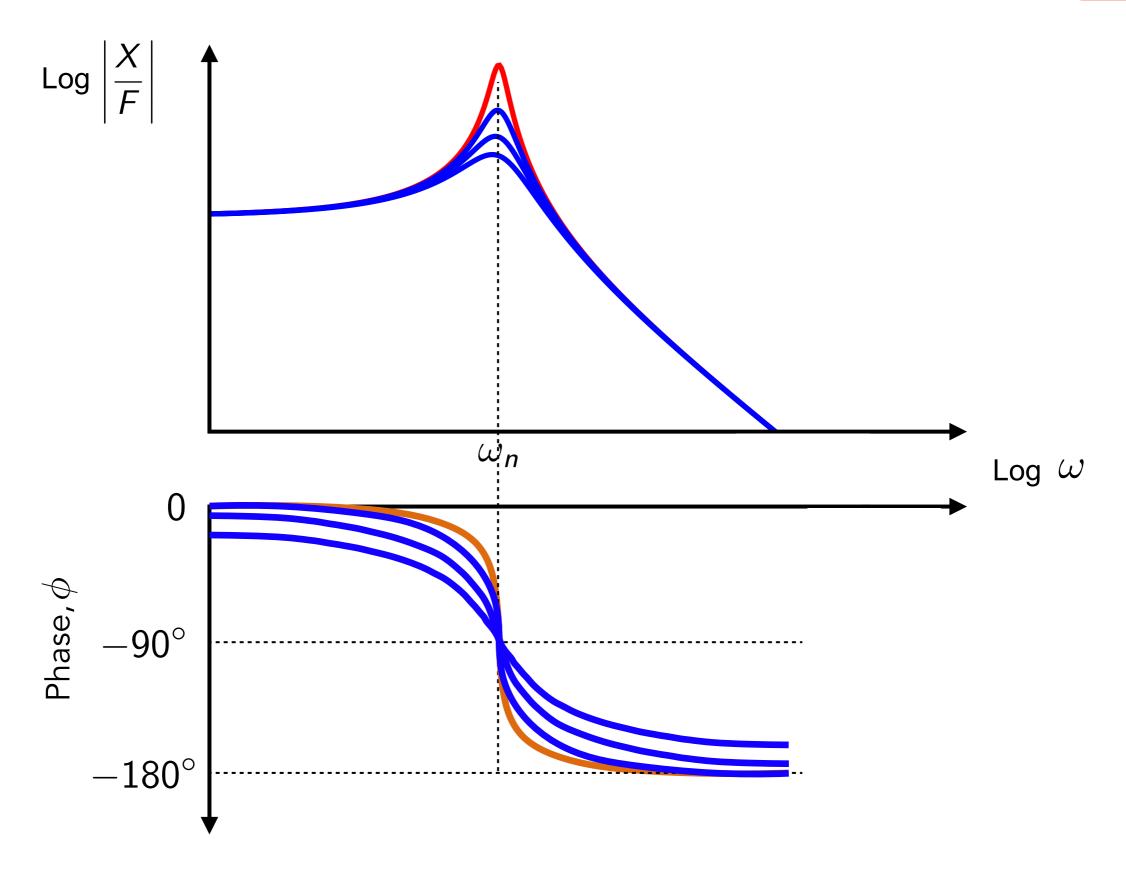
$$\omega = \omega_n \Rightarrow \phi \approx -\tan^{-1}(\infty) = -90^{\circ}$$

$$\omega \gg \omega_n \Rightarrow \phi \approx \tan^{-1}(0) = -180^{\circ}$$

Note: If z=1/(a+jb), the phase is $\phi=-\tan^{-1}(b/a)$

Phase graph

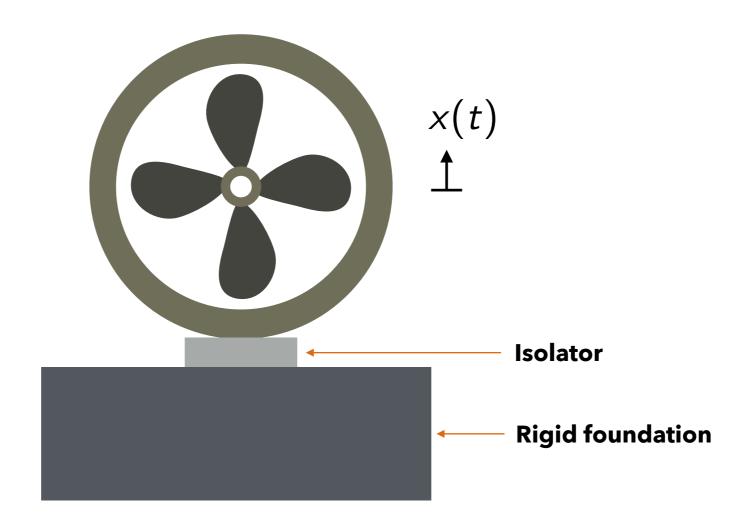




Example 4.2

A 50 kg rotating machine is known to have vertical r.m.s velocity of 8 mm/s. The machine runs at operating frequency of 800 RPM. The machine is rested on rubber isolator with total stiffness constant of 10,000 N/m.

How to effectively reduce the vibration of the machine?



The operating frequency of the machine:

$$f = rac{900}{60} = 15 \; ext{Hz}$$
 $\omega = 2\pi f = 2\pi (15) = 94.2 \; ext{rad/s}$

The natural frequency:

$$\omega_n = \sqrt{\frac{k}{m}} = \sqrt{\frac{10,000}{50}} = 14.14 \text{ rad/s}$$

The condition: $\omega \gg \omega_n$ (Mass controlled)

Thus the vibration can be effectively reduced by increasing the mass of the machine.

Additional Resources

Interact with my animations:

http://www.azmaputra.com/animations/

My white-board animation videos:

http://www.youtube.com/c/AzmaPutra-channel

Vector graphics in this note (Pages 3, 4, 11, 14) are credit to www. freepik.com

A. Putra, R. Ramlan, A. Y. Ismail, *Mechanical Vibration: Module 9 Teaching and Learning Series*, Penerbit UTeM, 2014

D. J. Inman, Engineering Vibrations, Pearson, 4th Ed. 2014

S. S. Rao, Mechanical Vibrations, Pearson, 5th Ed. 2011