

MECHANICAL VIBRATION

BMCG 3233

CHAPTER 3: HARMONIC FREE VIBRATION (PART 1)

ASSOC. PROF. DR. AZMA PUTRA

Centre for Advanced Research on Energy, UTeM azma.putra@utem.edu.my

CONTENTS

- 3.1 Spring Element
 - 3.2 Mass Element

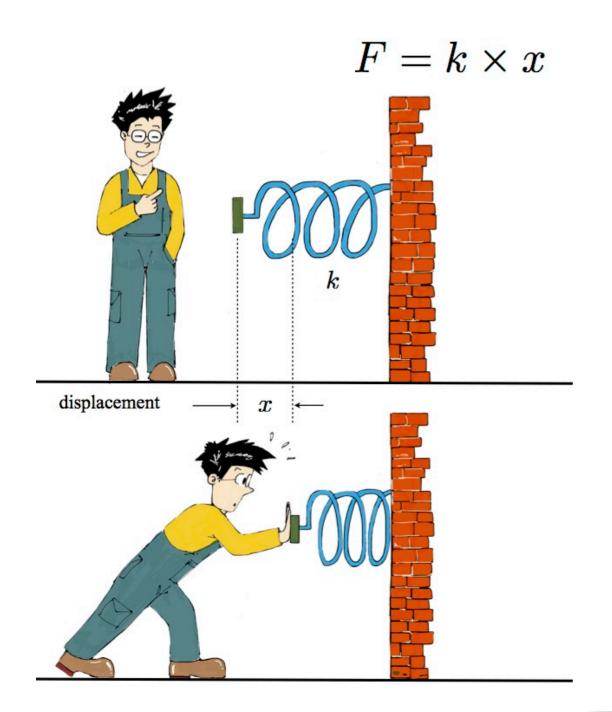
LEARNING OBJECTIVES

- 1. Calculate the energy from mass and spring elements
- 2. Calculate the equivalent spring constant, and equivalent mass

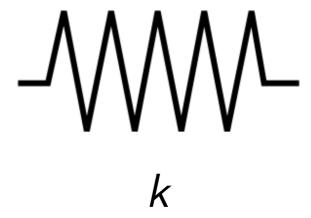
SPRING ELEMENT

Spring element

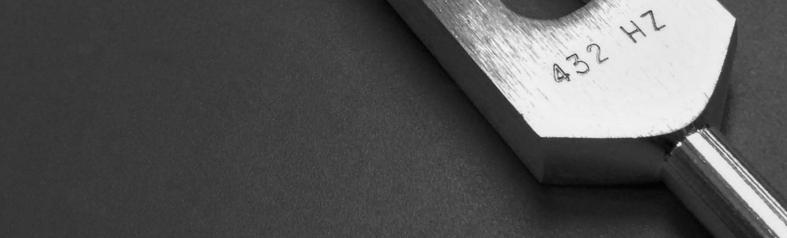
Any flexible element where it deforms if an external force is applied, and returns to its original shape when the force is absence.



Mathematical symbol:

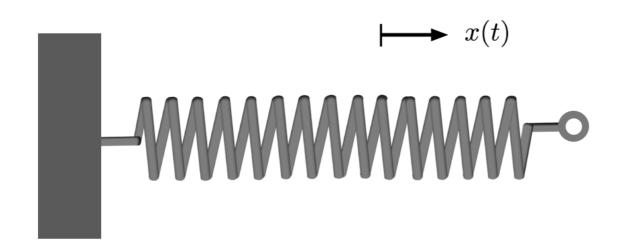


Stiffness constant [N/m]



Looks like a rigid structure, a tuning fork is actually flexible when it vibrates. That is why we can hear the emitted sound.

Translational Spring



Force:

$$F = kx(t)$$

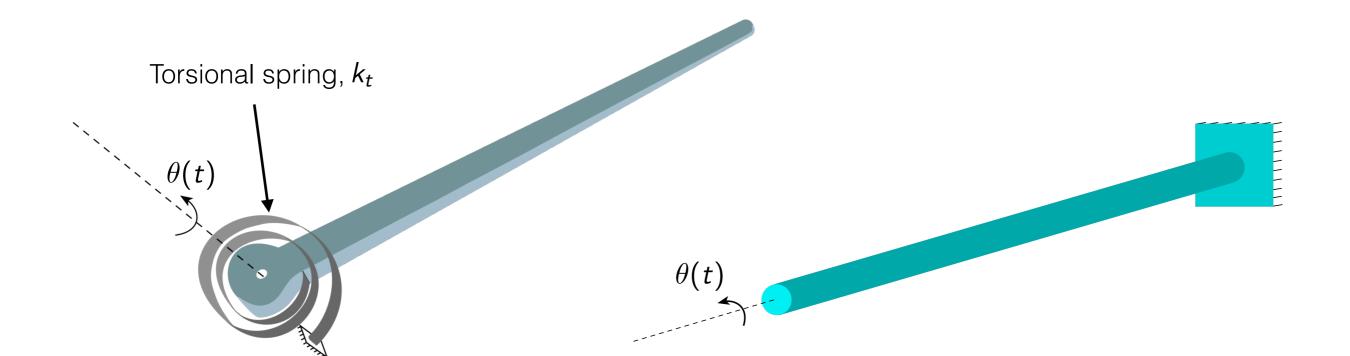
Potential energy:

$$U = \frac{1}{2}kx(t)^2$$

Unit: Joule

Unit: N/m

Rotational Spring



Torsion:

$$T = k_t \theta(t)$$

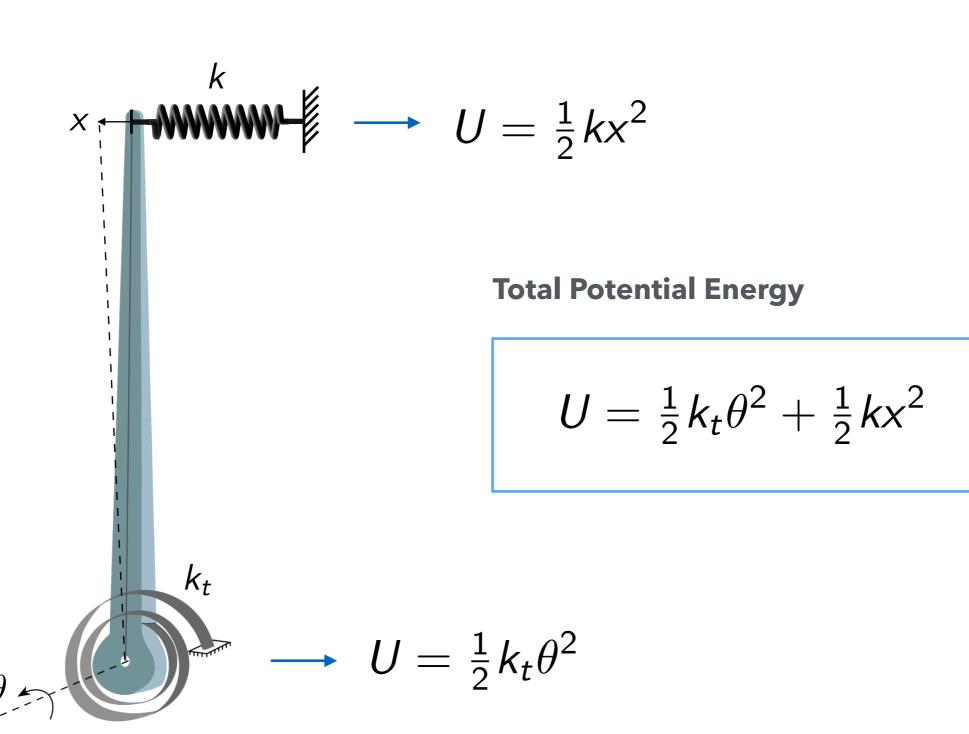
Unit: N.m

Potential energy:

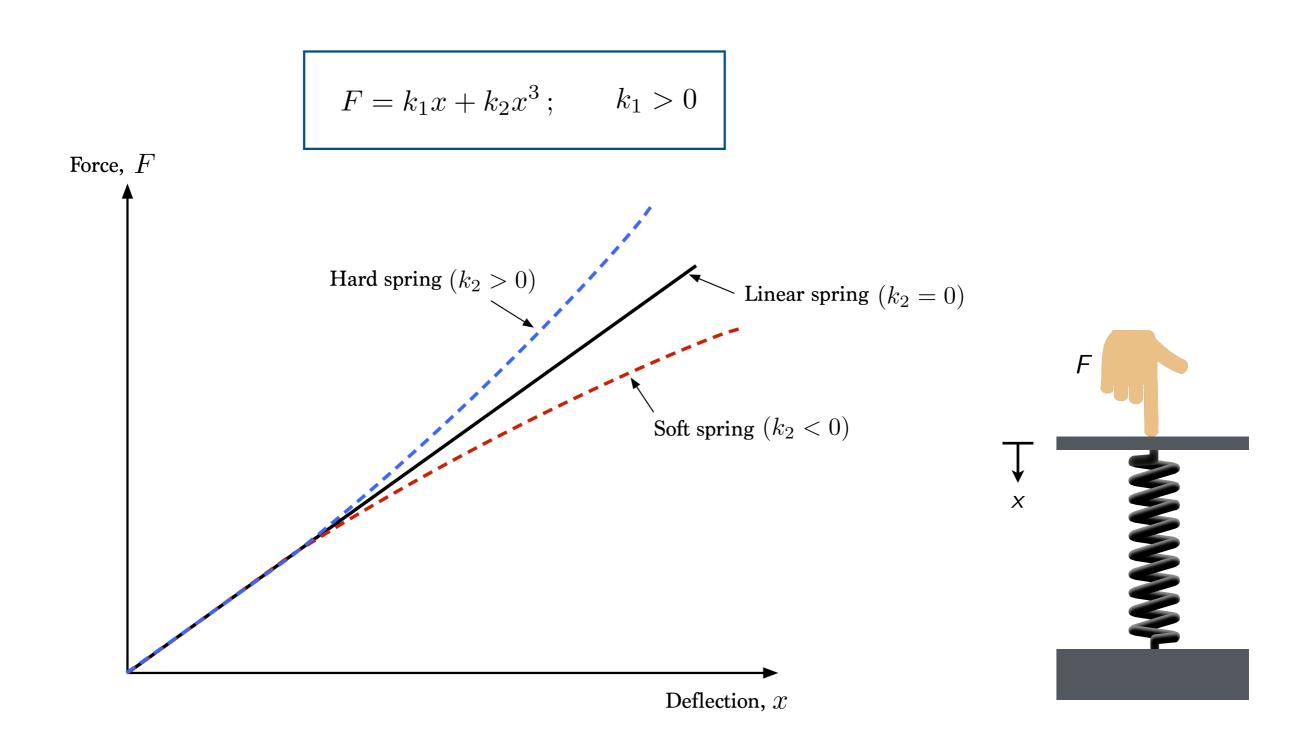
$$U = \frac{1}{2} k_t \theta(t)^2$$

Unit: Joule

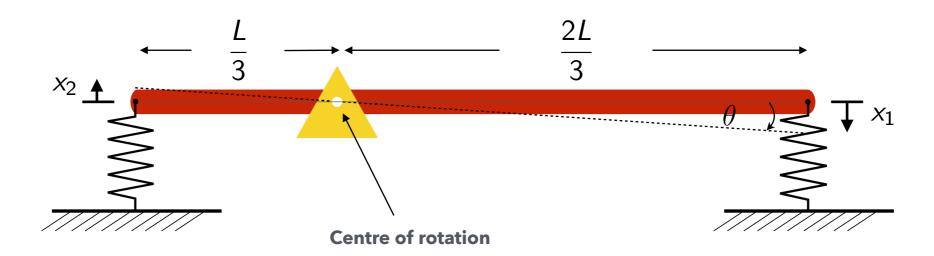
We can sum up the potential energy from both translational and rotational springs.

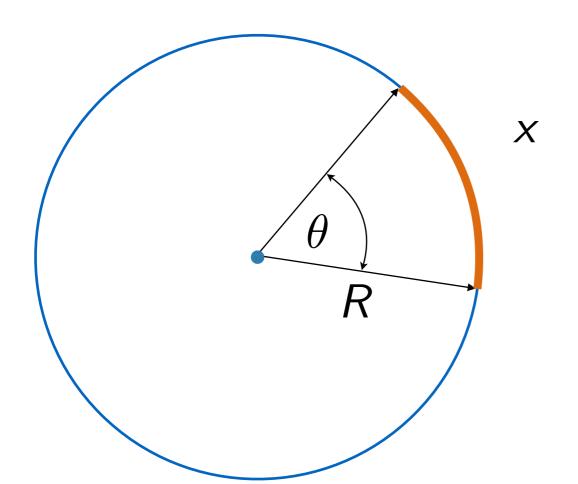


We use 'linear spring', where force is proportional to the spring deflection.

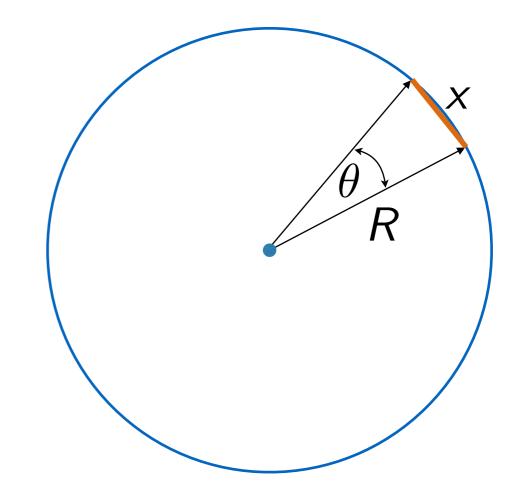


What are the deflections x_1 and x_2 in terms of θ ?





$$x = R \sin \theta$$



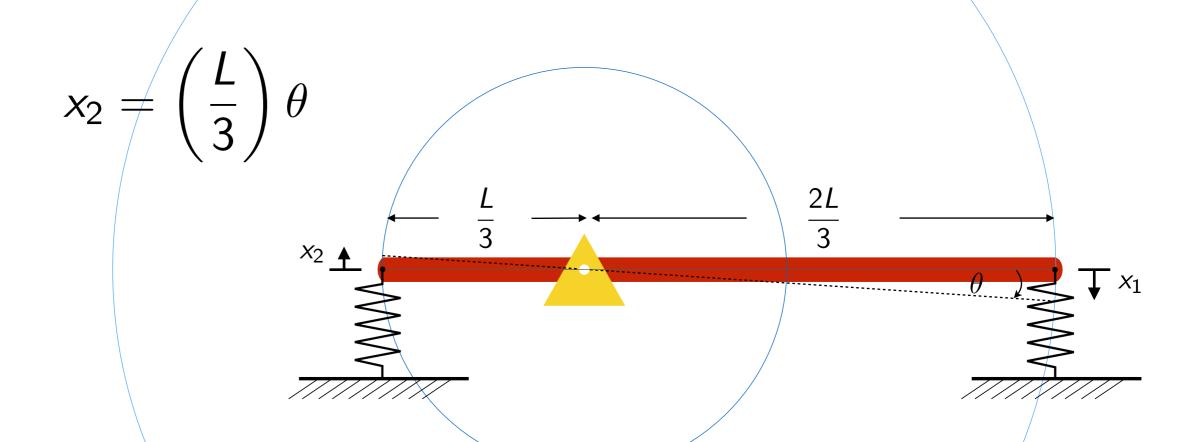
$$x \approx R\theta$$

If θ is small,

$$\sin\theta\approx\theta-\frac{\theta^3}{3!}+\cdots\approx\theta$$

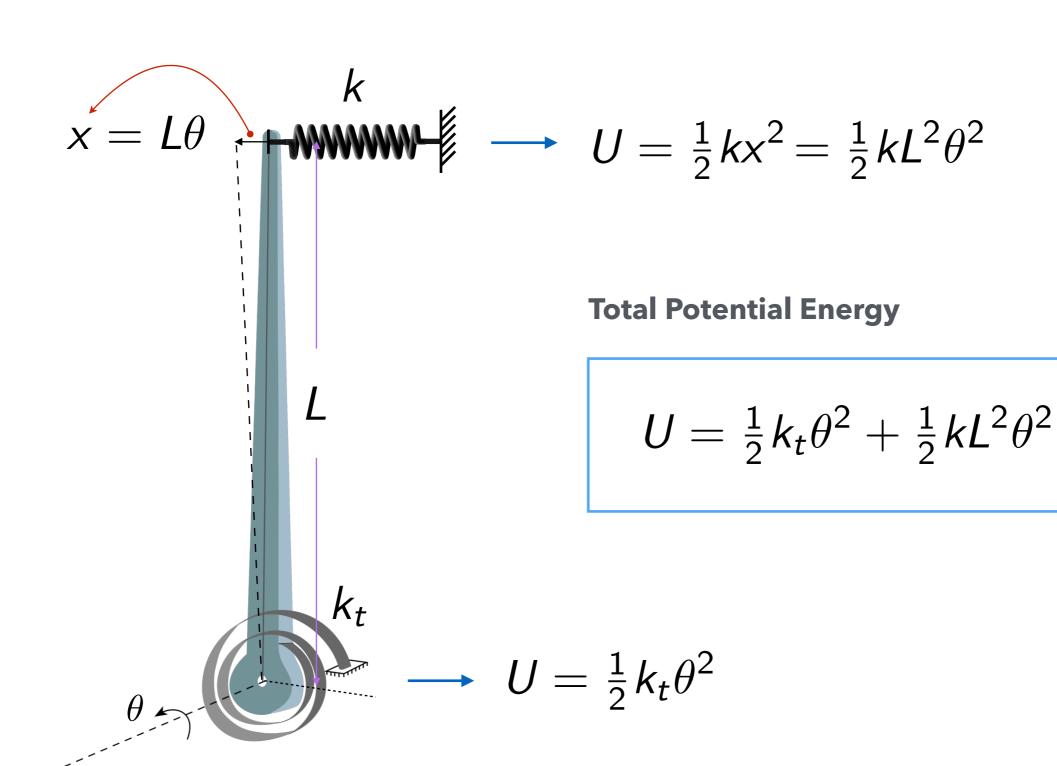
x can be approximated by a straight line.

Linear deflections of the spring



$$x_1 = \left(\frac{2L}{3}\right)\theta$$

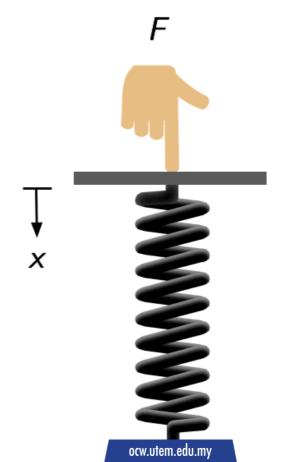
By using the principle of linearity:



The equivalent stiffness can be found by considering:

- 1. Force-Deformation relationship
- 2. Potential Energy-Deformation relationship

$$k = \frac{F}{x}$$



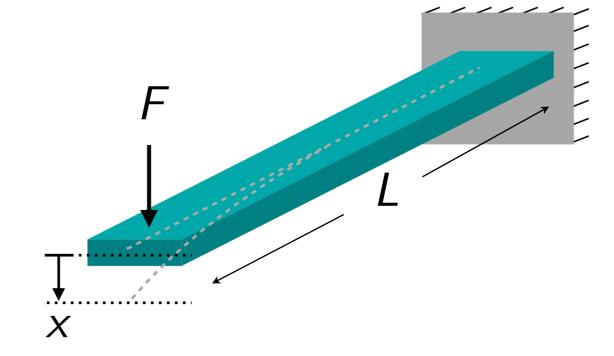
Cantilevered beam

Force required to deflect the tip of the beam by x is

$$F = \left(\frac{3EI}{L^3}\right) x$$

The stiffness constant is therefore:

$$k = \frac{F}{x} = \frac{3EI}{L^3}$$



"The stiffness at the tip of the beam"

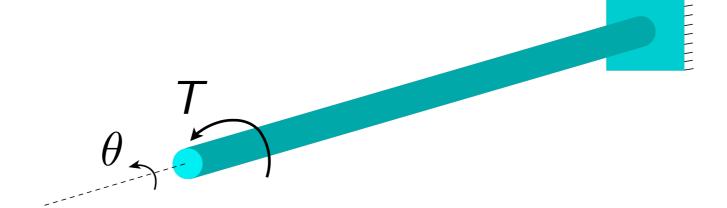
E: Young's Modulus

Second mass moment of inertia

Rod in torsion

Torque required to deflect the tip of the rod by θ is

$$T = \left(\frac{GI}{L}\right)\theta$$



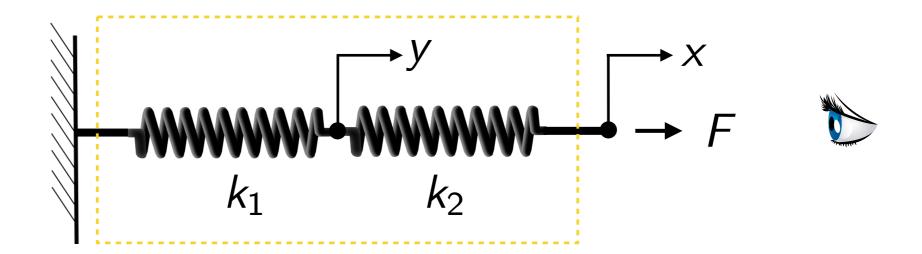
The torsional stiffness constant is:

$$k = \frac{T}{\theta} = \frac{GI}{L}$$

G: Shear modulus

Polar moment of area

Springs in series

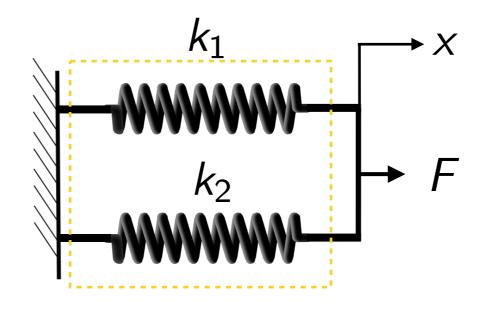


- 1. Each spring carries the same force
- 2. Total deflection = sum of individual deflection

$$F = k_1 y \\ F = k_2(x - y) \qquad \longrightarrow \qquad F\left(1 + \frac{k_2}{k_1}\right) = k_2 x$$

$$\frac{1}{k_{eq}} = \frac{x}{F} = \frac{1}{k_1} + \frac{1}{k_2}$$

Springs in parallel



- 1. All springs have the same deflection
- 2. Total force = sum of force for each spring

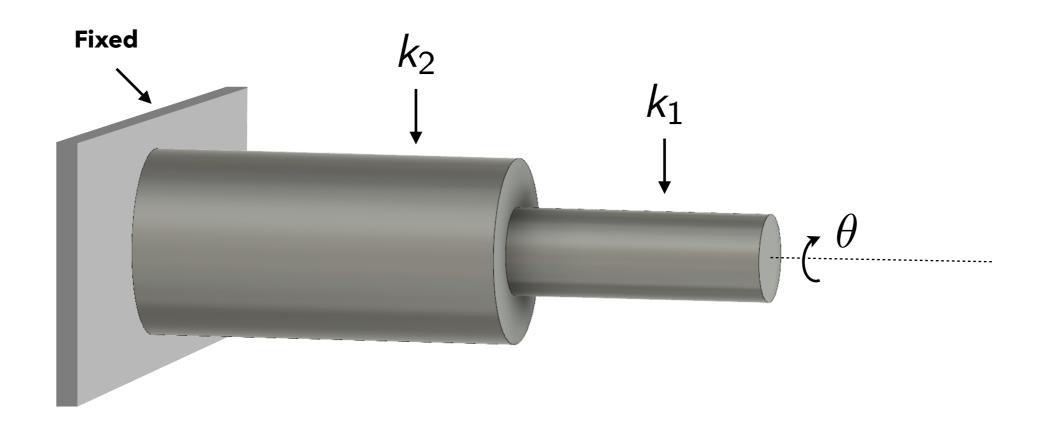
$$F_1 = k_1 x$$
;

$$F_2=k_2x$$
;

$$F = F_1 + F_2$$

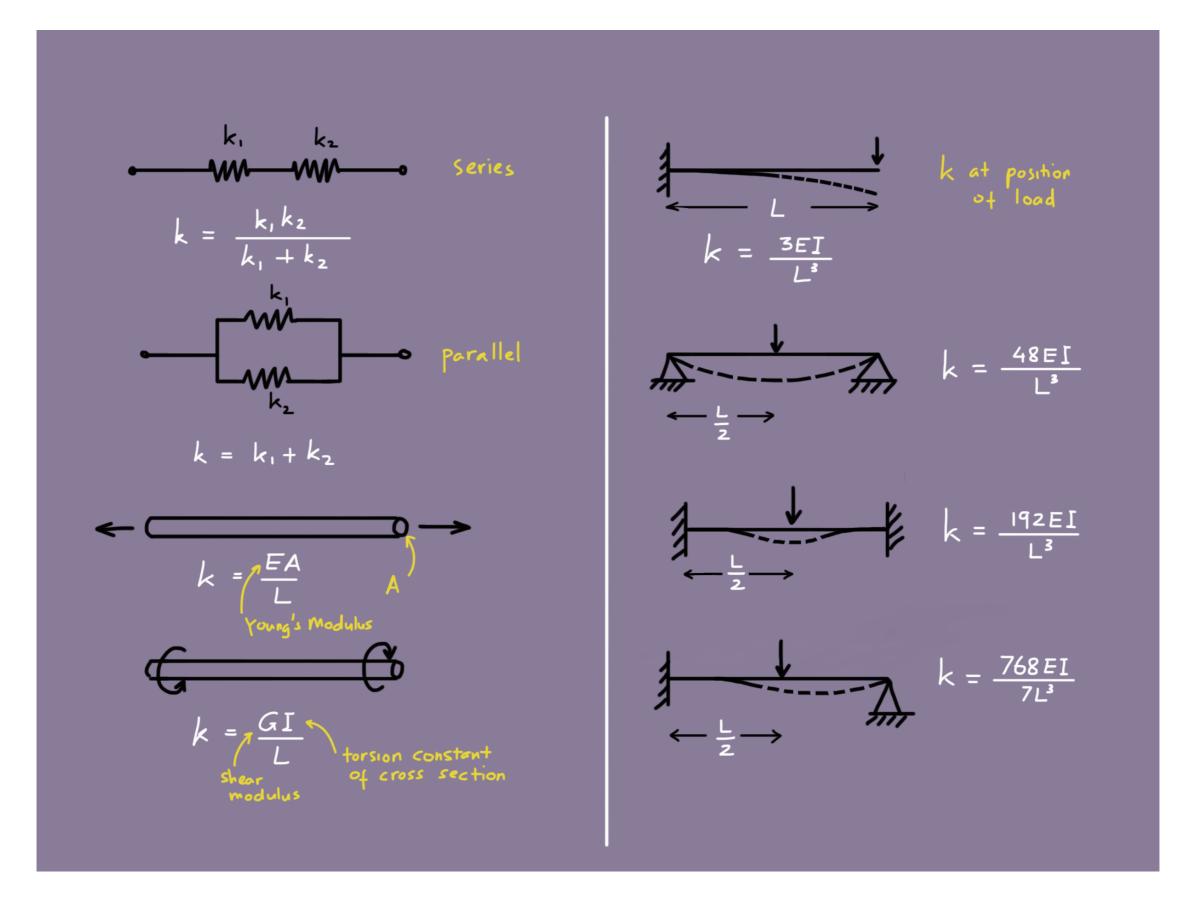
$$k_{eq} = \frac{F}{x} = k_1 + k_2$$

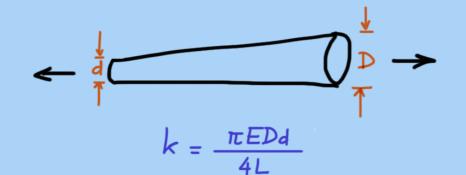
 k_b and k_s , series or parallel?

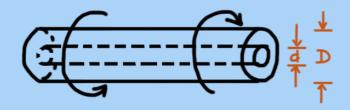


 k_1 and k_2 , series or parallel?

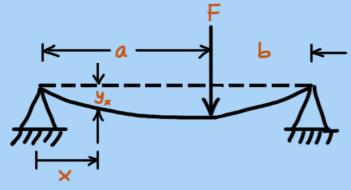
Formulae of stiffness constant are available in stiffness table.





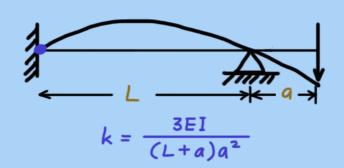


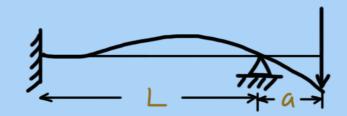
$$k = \frac{\pi G}{32L} (D^4 - d^4)$$



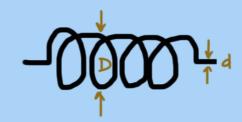
$$k = \frac{3EIL}{a^2b^2}$$

$$y_x = \frac{Fb_x}{6EIL}(L^2 - x^2 - b^2)$$





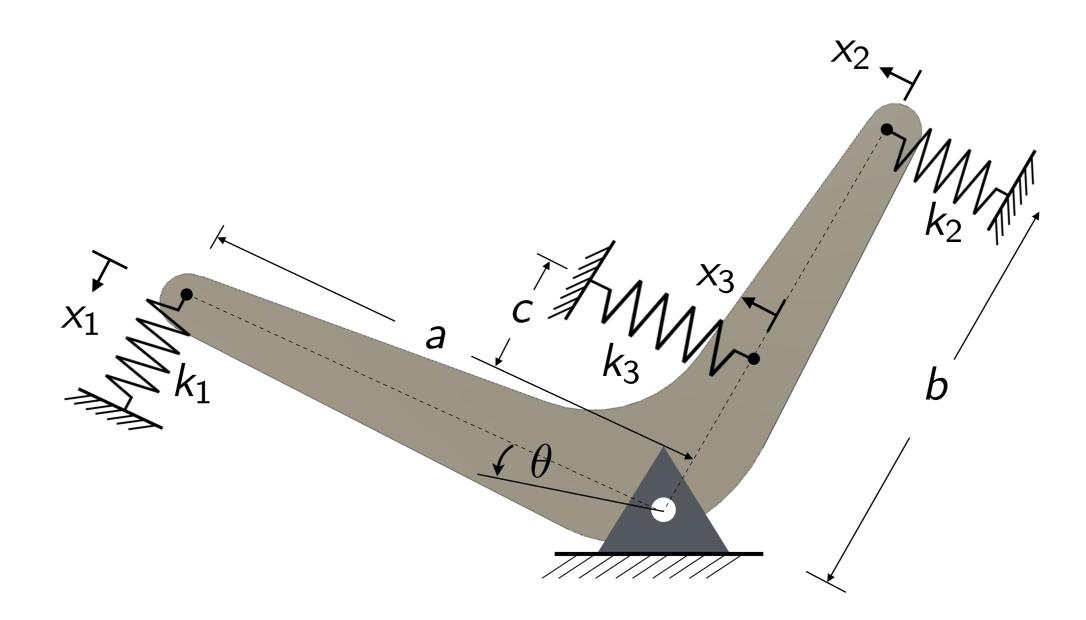
$$k = \frac{24EI}{a^2(3L+8a)}$$



$$k = \frac{Gd^4}{8nD^3}$$
Number 1
of turns

$$k = \frac{EI}{L}$$
total length

For a more complicated system where no springs are series or parallel, we can use potential energy to find the equivalent stiffness constant of the system.



Write down the potential energy of each spring:

$$U_1 = \frac{1}{2}k_1x_1^2$$
 $U_2 = \frac{1}{2}k_2x_2^2$ $U_3 = \frac{1}{2}k_3x_3^2$

$$U_2=\tfrac{1}{2}k_2x_2^2$$

$$U_3=\tfrac{1}{2}k_3x_3^2$$

Choose a generalised coordinate.

Say the deflection of spring k_1 as the generalised coordinate.

All potential energies must be written as a function of X_1

Linearisation of displacement:

$$x_1 = a\theta$$
 $x_2 = b\theta$
 $x_3 = c\theta$

$$\rightarrow \frac{x_1}{x_2} = \frac{a}{b} \quad \text{and} \quad$$

$$x_1 = a\theta$$

$$x_2 = b\theta$$

$$x_3 = c\theta$$

$$x_1 = a\theta$$

$$x_2 = b\theta$$

$$x_3 = c\theta$$

$$x_1 = a\theta$$

$$x_2 = b\theta$$

$$x_3 = c\theta$$

$$x_1 = a\theta$$

$$x_2 = a\theta$$

$$x_3 = c\theta$$

$$x_1 = a\theta$$

$$x_2 = a\theta$$

$$x_3 = c\theta$$

$$x_1 = a\theta$$

$$x_2 = a\theta$$

$$x_3 = a\theta$$

$$x_4 = a\theta$$

$$x_3 = a\theta$$

$$x_4 = a\theta$$

$$x_5 = a\theta$$

$$x_1 = a\theta$$

$$x_2 = a\theta$$

$$x_3 = a\theta$$

$$x_4 = a\theta$$

$$x_3 = a\theta$$

$$x_4 = a\theta$$

$$x_5 = a\theta$$

$$x_5 = a\theta$$

$$x_6 = a\theta$$

$$x_1 = a\theta$$

$$x_1 = a\theta$$

$$x_2 = a\theta$$

$$x_3 = a\theta$$

$$x_4 = a\theta$$

$$x_5 = a\theta$$

$$x_5 = a\theta$$

$$x_6 = a\theta$$

$$x_7 = a\theta$$

$$x_8 = a\theta$$

$$x_3 = \left(\frac{c}{a}\right) x_1$$

Total potential energy:

$$U_{\text{tot}} = U_1 + U_2 + U_3 = \frac{1}{2}$$

$$U_{
m tot} = U_1 + U_2 + U_3 = \frac{1}{2} \left[k_1 + k_2 \left(\frac{b}{a} \right)^2 + k_3 \left(\frac{c}{a} \right)^2 \right] x_1^2$$
 Equivalent stiffness constant, $k_{
m eq}$

Watch the video: "Spring Element"

Scan this QR code

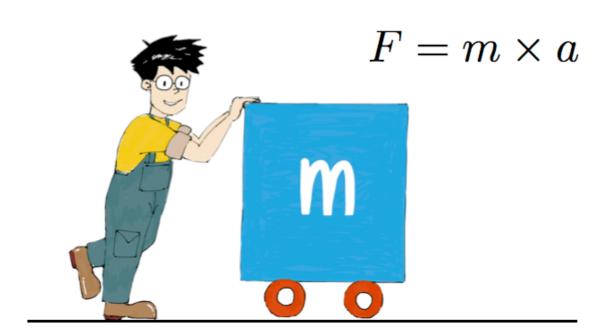
Or click/tap here.

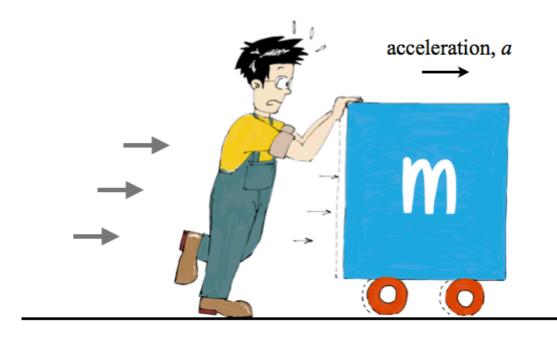
https://youtu.be/Zdxaod0RRdA

MASS/INERTIA ELEMENT

Mass Element

A rigid body. It accelerates when an external force is applied.



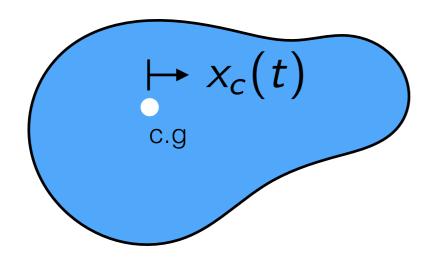


Mathematical symbol:

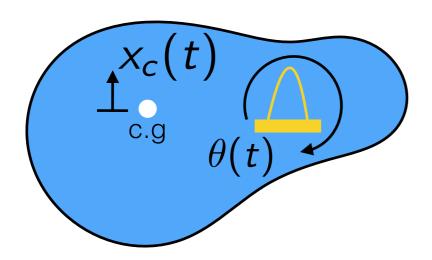
m

Mass [kg]

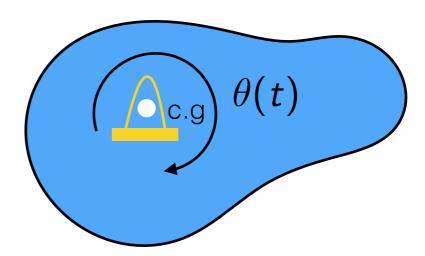
Kinetic Energy



$$T = \frac{1}{2}m\dot{x}_c^2$$



$$T = \frac{1}{2}m\dot{x}_c^2 + \frac{1}{2}J\dot{\theta}^2$$



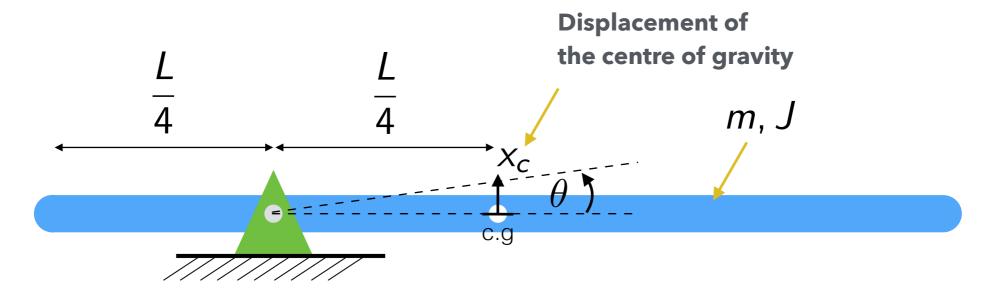
$$T = \frac{1}{2}J\dot{\theta}^2$$

m = mass

J = second mass moment of inertia

c.g = centre of gravity/centre of mass

A rotating uniform bar.



$$T = \frac{1}{2}m\dot{x_c}^2 + \frac{1}{2}J\dot{\theta}^2$$

$$x_c = \left(\frac{L}{4}\right)\theta$$

If θ is the generalised coordinate:

$$T = \frac{1}{2}m\left(\frac{L}{4}\right)^{2}\dot{\theta}^{2} + \frac{1}{2}J\dot{\theta}^{2} = \frac{1}{2}\left[\frac{mL^{2}}{16} + J\right]\dot{\theta}^{2}$$

Equivalent second mass moment of inertia, $J_{\rm eq}$

Additional Resources

My website:

http://www.azmaputra.com

My white-board animation videos:

http://www.youtube.com/c/AzmaPutra-channel

A. Putra, R. Ramlan, A. Y. Ismail, *Mechanical Vibration: Module 9 Teaching and Learning Series*, Penerbit UTeM, 2014

D. J. Inman, Engineering Vibrations, Pearson, 4th Ed. 2014

S. S. Rao, Mechanical Vibrations, Pearson, 5th Ed. 2011