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1. Calculate the energy from mass and
2. Calculate the equivalent spring constant,
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Spring element

Any flexible element where it deforms if an external force is applied,
and returns to its original shape when the force is absence.

Mathematical symbol:

displacement

K

Stiffness constant [N/m]

ocw.utem.edu.my



>
=
>
=
=
=
[
=
&
=)




Rubber isolator, usually used as engi
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Looks like a rigid structure, a tuning fork is actually flexible
when it vibrates. That is why we can hear the emitted sound.
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Translational Spring

® Unit: N/m

Force: F = kX(t)

1 2
Potential energy: U= §kX(t) -0 Unit: Joule
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Rotational Spring

Torsional spring, k¢
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Torsion:

Potential energy:

® Unit: N.m

-0 Unit: Joule
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We can sum up the potential energy from both translational and rotational springs.

— U = Lkx?

1
2

Total Potential Energy

U= 3k + S kx*

— U= k0"
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Linearisation

We use ‘linear spring’, where force is proportional to the spring deflection.

F:klilj—l—kQZBS; ki1 >0

Force, [’
A

Soft spring (k2 < 0)

>
Deflection, &




What are the deflections X1 and X2 interms of 6 ?

Centre of rotation



x = Rsinf x ~ RO

If 0 is small,
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X can be approximated by a straight line.



Linear deflections of the spring




By using the principle of linearity:

— U= Zkx*= kL?0°

Total Potential Energy

U= 3ki0® + kL6
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Equivalent Stiffness Constant

The equivalent stiffness can be found by considering:

1. Force-Deformation relationship

2. Potential Energy-Deformation relationship

ocw.utem.edu.my



Force-Deformation

Cantilevered beam

Force required to deflect the tip of the beam by x is

3EI
F = F X

The stiffness constant is therefore:

F 3E] “The stiffness a
o— - — The stiff t

X /3 the tip of the beam

E : Young'’s Modulus

I - Second mass moment of inertia
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Force-Deformation

Torque required to deflect the tip of the rod by 0 is

G/
T—TH

The torsional stiffness constant is:

G . Shear modulus

I . Polar moment of area
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Springs in series

1. Each spring carries the same force

2. Total deflection = sum of individual deflection

F=k — k
ty v Fl1+2) = kox
F:k2(X—y) — kl




Springs in parallel

1. All springs have the same deflection

2. Total force = sum of force for each spring

Fi = kix; Fr = kox; F=F+F

F
keq:;:k1+k2




kb and ks , series or parallel?



Fixed k2

kl and k2 , series or parallel?
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Formulae of stiffness constant are available in stiffness table.
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Potential Energy-Deformation

For a more complicated system where no springs are series or parallel,
we can use potential energy to find the equivalent stiffness constant of the system.
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Write down the potential energy of each spring:

1 2 1 2 1 2

=1 T T

Choose a generalised coordinate.
Say the deflection of spring kj as the generalised coordinate.

All potential energies must be written as a function of Xi

Linearisation of displacement:

X1 = al

X]_ a X]. d ® b ® C
X2:b9 — — — and — = — Xo =\ — | X] X3:(—)X1

X2 b X3 C a a
X3 = cl
Total potential energy:

_ _ Equivalent
. b 2 C 2 5 stiffness constant,

Ut = U+ Us + Us = 1 [ ka+ ko <3> tha(2) |4 ke




Watch the video: “Spring Element”

Scan this QR code

Or click/tap here.


https://youtu.be/Zdxaod0RRdA

https://youtu.be/ZdxaodORRdJA
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A rigid body. It accelerates when an external force is applied.

F=mXa

Mathematical symbol:

Mass [kg]
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Kinetic Energy

T

1J6°

m = Mmass

J = second mass moment of inertia

c.g = centre of gravity/centre of mass
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Equivalent Mass/Moment Inertia

A rotating uniform bar.

Displacement of
the centre of gravity

L L
4 4 ‘ / m, J

: L
Kinetic energy: T = %mx'c2 + %J92 Xe = (—) 0
t ! 4
If § is the generalised coordinate:
Equivalent

second mass

L : ‘5 1 1A2 mL? "2 moment of inertia,
T:%m<z)0—|—§./9:%|: IJ:|(9 Jeq
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Additional Resources

My website:
http://www.azmaputra.com

AZMA
PUTRA

My white-board animation videos:
http://www.youtube.com/c/AzmaPutra-channel Yo u Tu he
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