
Advanced Programming
(BETC 1353)

Week 5 : Structures, Unions, Bit
Manipulations and Enumerations

Norfadzlia binti Mohd Yusof
norfadzlia@utem.edu.my

Ika Dewi binti Saiful Bahri
ikadewi@utem.edu.my

Learning Outcomes

At the end of this lecture, you should be able to:

• Define and initialize structures

• Access structure members

• Combine structures and functions

• Define typedef

Structures

• What is a structure?

– A collection of different data types under one
name

– Commonly used to define records to be stored in
files

• Steps of using a structure

– Define a “template”

– Declare variables for the “template”

Defining a Structure

member1;

...

memberN;

individual

member
declarations

tag

“template”

name
struct

keyword

{

};

MUST end with a semicolon

Declaring Variables

struct

keyword

tag

“template” name that appears in

the structure definition

variable1, ...,

variableN;

structure variables
of type tag

Example (I)

//Definition of structure

struct book {

char isbn[20];

char title[50];

char author[50];

int quantity;

};

//Declaration of variables

struct book book1,book2;

member

elements of
the structure

“template” name is book

the structure variables

Combining Structure Declaration
and Variables Definition

member1;

...

memberN;

individual

member
declarations

tag

“template” name (optional)

struct

keyword

{

}variable1, ...,

variableN

structure variables of type tag

;

end with a

semicolon

Example (II)
struct book{

char isbn[20];

char title[50];

char author[50];

int quantity;

} book1, book2;

struct {

char isbn[20];

char title[50];

char author[50];

int quantity;

} book1, book2;

No tag

Example (II)

• Advantages of using tags: Can reuse the
“template” again

struct book{

char isbn[20];

char title[50];

char author[50];

int quantity;

} book1, book2;

struct book book3;

Structures as Members

book

isbn[20]

title[50]

author[50]

quantity

borrowdate

day

month

year

Structures as Members

struct date {

int day;

int month;

int year;

};

struct book{

char isbn [20];

char title [50];

char author [50;

int quantity;

struct date borrowdate;

} book1, book2;

book

isbn[20]

title[50]

author[50]

quantity

borrowdate

day

month

year

Array of Structures

struct book{

char isbn [20];

char title [50];

char author [50;

int quantity;

struct date borrowdate;

} books[100];

customers is a 100-element array

struct book{

char isbn[20];

char title[50];

char author[50;

int quantity;

struct date borrowdate;

}

Initializing Structures
struct tag variable = {value1, ..., valueN};

struct book book1 =

{123456, "Fundamental Programming", "Aki Ross", 5,

11, 3, 2015};

must be in proper order

as in structure definition

isbn quantitytitle[50]

borrowdate

author

Initializing Structures (Array)

• For the case of initializing array of structures

struct book books[] = {

{123456, "Learn C++", "Aki Ross", 5, 13, 3, 2015},

{567891, "Learn JAVA", "Ryan Agner", 3, 25, 2, 2015}

};

books[0] books[1]

Valid Operators

• (=) to assign a structure to a structure of the
same type

• (&) to get the address of a structure

• (.) to access the members of a structure

• (sizeof) to determine the size of a structure

Accessing Members of Structures

structure-

type

variable

dot

operat

or

member

within the

structure

cout << “ISBN number=“ << book1.isbn << endl;

cout << “Title= “ << book1.title << endl;

int book_in;

book_in = book[1].quantity - 1;

variable.member

array[expression].member

Accessing Members of Structures

variable.member.submember

variable.member[expression]

cout << "Year = “ << book1.borrowdate.year << endl;

cout << book[1].title[0]) << endl;

structure member

of type array

member of the

embedded

structure

Accessing Members of Pointers to
Structure

• For the case of pointers to structure, usually
member selection operator (->) is used to
access the members

struct book book1;

struct book *ptrbook1;

ptrbook1 = &book1;

book1.quantity = 3;

ptrbook1->quantity= 3;

Assign 3 to
quantity

of book1

Note:

Accessing Members of Pointers to
Structure

• Another alternative way is by using
dereference operator (*) on the pointer

• After dereference, members can be accessed
using dot operator (.)

(*ptrbook1).quantity = 3;

(*ptrbook1)  book1

(*ptrbook1).quantity *ptrbook1.quantity≠

Accessing Pointer Members

struct test {

int *val1;

int *val2;

};

struct test testvar;

int a = 10;

testvar.val1 = &a;

cout << “Address is” << testvar.val1 << endl;

cout << “Value is” << *testvar.val1 << endl;

Shows the address of the
pointer member *val1

Shows the value of the pointer
member *val1, same as

*(testvar.val1)

User-Defined Data Type

typedef type new-type;

keyword

• standard data type - int, float

• user-defined data type - structures

new user-defined

data type

Typedef float Volume;

Volume box1, box2 ;

float box1, box2;

Volume is a user-defined

data type equivalent to type
float

Both are equivalent

User-Defined Data Type (struct)

typedef struct type new-

type;

typedef struct {

member1;

...

memberN;

} new-type;

“Template” name

User-Defined Data Type (struct)

typedef struct {

char isbn[20];

char title[50];

char author[50;

int quantity;

} Record;

Record book1, book2;

User-Defined Data Type (struct)

typedef struct {

int month;

int day;

int year;

} Date;

typedef struct {

char isbn[20];

char title[50];

char author[50;

int quantity;

Date borrowdate;

} Record;

Record books[100];

Using Structures with Functions

• Passing individual structure members

– pass by value

• Passing an entire structure

– pass by value

• Passing a pointer to a structure

– pass by reference

Passing Individual Structures Members

#include <iostream>

void printDate(int day, int month, int year);

typedef struct {

int day;

int month;

int year;

} Date;

int main()

{

Date returndate = {3, 12, 2015};

printDate(returndate.day, returndate.month,

returndate.year);

return 0;

}

void printDate(int day, int

month, int year)

{

cout << " Day = " << day;

cout << "Month = " << month;

cout << " Year = " << year <<

endl;

}

Passing an Entire Structure
#include <iostream>

Using namespace std;

void printDate(Date);

typedef struct {

int day;

int month;

int year;

} Date;

int main()

{

Date borrowdate = {13, 3, 2015};

printDate(borrowdate);

return 0;

}

void printDate(Date returndate)

{

cout << " Day = " <<

returndate.day;

cout << "Month = " <<

returndate.month;

cout << " Year = " <<

returndate.year

<< endl;

}

Passing a Pointer to a Structure

#include <iostream>

void printDate(Date *);

typedef struct {

int day;

int month;

int year;

} Date;

int main()

{

Date borrowdate = {13, 3, 2015};

printDate(&borrowdate);

return 0;

}

void printDate(Date *brwPtr)

{

cout << " Day = " <<

brwPtr->day;

cout << "Month = " <<

brwPtr->month;

cout << " Year = " <<

brwPtr->year

<< endl;

}

Example

• Imagine a scenario where you’re asked to
write a program that stores records of 100
employees

• Each records contains

– Staff ID (int)

– Staff Name (char[60])

– Gender (char)

Storage Method - Without Structure

#define MAXRECORDS 100

int employee_ID[MAXRECORDS];

char employee_Name[MAXRECORDS][60];

char employee_Gender[MAXRECORDS];

The use of a 2D

array.

Requires special

attention and is

much more difficult

to handle.

employee_ID

employee_Name

employee_Gender

0 1 2 3 100

0

1

...

60

Storage Method – Without Structure

Uses 3 different array to store each item in the record.

Not intuitive. Imagine using one file to store IDs, one to store names

and another to store genders.

ID Name Gender

Employee

Storage Method – With Structure

#define MAXRECORDS 100

typedef struct {

int ID;

char Name[80];

char Gender;

} Record;

Record employee[MAXRECORDS];

Name

ID

Gender

0 1 2 60...

Name

ID

Gender

0 1 2 60...

Name

ID

Gender

0 1 2 60...

employee

...

0

1

100

Storage Method – With Structure

Name

ID

Gender

Name

ID

Gender

Name

ID

Gender

Name

ID

Gender

Employee

Uses an array of structure. The data is stored as the member of the

structure.

Simple and easy. Very intuitive, as it is similar to how we store hardcopy

records using file.

Access Method - Without Structure

void printEmployee(int id, char *name, char gender){

cout << “Employee Id:” << id << endl;

cout << “Name:” << name << endl;

cout << “Gender:” << gender << endl;

}

int i;

for (i=0; i < MAXRECORDS; i++)

printEmployee(employee_ID[i],

&employee_Name[i][0],employee_Gender[i]);

Function to print the info of a employee:

Statements to print all the employees using printEmployee:

Needed to state all the data in the function individually.

Tedious and error-prone.

Needed extra attention due to the use of 2D array.

Access Method – With Structure

void printEmployee(Record employee) {

cout << “Employee Id:” << employee.ID << endl;

cout << “Name:” << employee.Name << endl;

cout << “Gender:” << employee.Gender << endl;

}

int i;

for (i=0; i < MAXRECORDS; i++)

printEmployee(employee[i]);

Function to print the info of an employee:

Statements to print all the employees using printEmployee:

The whole structure can be passed into the function directly.

Simple and easy

Self-Review Questions
Question 1

Determine whether the following statements are valid or not?

a)
struct tax

char names;

float bills;

b)

struct class {

char student;

int number_of_student;

};

struct math{

float marks;

struct class record;

}test, final;

Self-Review Questions
Answer:

a)
struct tax {//complete the

code here

char names;

float bills;

}; //complete the code here

Answer: Invalid

b)

struct class {

char student;

int number_of_student;

};

struct math{

float marks;

struct class record;

}test, final;

Answer: Valid

Self-Review Questions

Question 2

State the different between this two structure

struct product sale;

struct product *sale;

Self-Review Questions

Answer:

struct product sale;

Answer: normal variable

struct product *sale;

Answer: pointer variable

Self-Review Questions

Question 3
Complete the program below to display the result as shown.

#include <stdio.h>

#include <string.h>

typedef struct BETC1353

{

char student [60];

float mark;

} record;

int main()

{

record test;

strcpy(test.student, "Ramlee");

test.mark=90.3;

return 0;

}

Name is: Ramlee
Mark is: 90.30

Result

Answer:

#include <stdio.h>

#include <string.h>

typedef struct BETC1353

{

char student [60];

float mark;

} record;

int main()

{

record test;

strcpy(test.student, "Ramlee");

test.mark=90.3;

printf("Name is: %s \n“,test.student);

printf("Mark is: %f\n", test.mark);

return 0;

}

Self-Review Questions

Self-Review Questions

• You are asked to write a program to stores the
information of one patient in a Clinic Malaya

• The records contains:

a. Patient Name : Aina Mardiana

b. Patient ID : 12345

c. Patient Contact Number: 0123456789

Self-Review Questions
#include <iostream>

using namespace std;

struct patient {

char name[80];

int ID;

int number;

};

int main ()

{

struct patient index;

index.name = "Aina Mardiana";

index.ID = 12345;

index.number = 0123456789;

cout<<"Name: "<<index.name<<'\n';

cout<<" ID number: "<<index.ID<<'\n';

cout<<" Telephone number: "<<index.number;

return 0;

}

