. =UTeM OPENCOURSEWARE

Advanced Programming
(BETC 1353)

Week 5 : Structures, Unions, Bit
Manipulations and Enumerations

Norfadzlia binti Mohd Yusof

norfadzlia@utem.edu.my
lka Dewi binti Saiful Bahri

ikadewi@utem.edu.my

000

Learning Outcomes

At the end of this lecture, you should be able to:

e Define and initialize structures

* Access structure members

e Combine structures and functions

* Define typedef

@080

ocw.utem.edu.m

Structures

e What is a structure?

— A collection of different data types under one
name

— Commonly used to define records to be stored in
files

e Steps of using a structure
— Define a “template”
— Declare variables for the “template”

(OO0

Defining a Structure

‘ keyword ‘ “template”
\\ name

struct tag {

individual
member1; > member
L declarations

}.
///%emberN;

‘ MUST end with a semicolon ‘

(OO0

Declaring Variables

structure variables
of type tag

\ ~

struct taqg variablel
variableN;

‘ keyword ‘

“template” name that appears in
the structure definition

(OO0

Example (I)

“template” name is book

//DefinitionAf structure
struct book {

char iinfe[zo]\ membel’

char

char author | / elementS Of
e amemEy the structure

b

//Declaration of wvariables
struct book boqgkl,book?2;

i

‘ the structure variables ‘

ocw.utem.edu.m

Combining Structure Declaration
and Variables Definition

‘ keyword ‘ “‘template” name (optional)‘

~
struct tag{

E

}variabiel, c e ey

variablqﬁlx//

‘ structure variables of type tag ‘

(OO0

end with a
semicolon

Example (I1)

struct book{
char 1sbn[20];
char ;
char ;
int quantity;

} bookl, book2;

!Notagl

strucﬁg{
char isbn[20];
char ;
char ;
int quantity;

} bookl, book2;

©089

eI

Example (I1)

* Advantages of using tags: Can reuse the
“template” again

struct book({
char i1sbn[20];
char .
char
int quantity;
} bookl, bookZ2;

struct book book3; ‘

(OO0

@080

Structures as Members

book |

1sbn[20]

title[50]

quantity I

|
|
[
|
Iauthor[50]
[
|
|
|

borrowdatel

—

month

—
I e

ocw.utem.edu.m

Structures as Members

| book |
struct idri;ced;y; _I isbn[20] I
int month; —I title[50] I
int year;
\ ’ —I author [50] I
struct book{ - I
char isbn [20]; _I borrowdate I

char title [50];

char author [50; : day I

int quantity;

struct date borrowdate; I month I
} bookl, book?2; I — I

(OO0

Array of Structures

struct book{
char isbn [20];

char 2
char 2
int ;

struct date borrowdate;
} books[100];

customers is a 100-element array

(OO0

Initializing Structures

struct tag variable = {valuel, ..., valueN};

struct book{

}

char
char
char
int

.
14
°
4

°
4

.
14

struct date borrowdate; must be in proper order

as in structure definition

struct book bookl =
{}23456("Fundamental Programminq", "Aki Ross",li,
|

&1, S 201%};

borrowdate

@080

ocw.utem.edu.m

Initializing Structures (Array)

* For the case of initializing array of structures

struct book books[] = {
—u] {123456, "Learn C++", "Aki Ross", 5, 13, 3, 2015},
{567891, "Learn JAVA", "Ryan Agner", 3, 25, 2, 2015}
A
b g
—1H0o0ks [0] books[1]

(OO0

Valid Operators

* (=) to assign a structure to a structure of the
same type

e (&) to get the address of a structure
e (.)to access the members of a structure
* (sizeof)to determine the size of a structure

(OO0

Accessing Members of Structures

—

variable.

structure- dot
type operat
variable or

~ O\

arraylexpression] .

cout << “ISBN number=% << bookl. << endl;
cout << “WTitle= “ << bookl. ;

int book 1in;
book in = book[l].quantity - 1;

(OO0

Accessing Members of Structures

variable. . Submember

member of the
embedded
structure

variable.

cout << "Year = Y << Dbookl. .year << endl;

cout << book[1l].) << endl;

(OO0

. . (20T
Accessing Members of Pomter
Structure

* For the case of pointers to structure, usually
member selection operator (—>) is used to

access the members

Assign 3 to

struct book bookl;

struct book *ptrbookl; of bookl

ptrbookl = &bookl;

bookl. = 3; C— l
3

°
4

‘ptrbookl—> =

(OO0

. . (SUTeM
Accessing Members of Pomter
Structure

* Another alternative way is by using
dereference operator (*) on the pointer

* After dereference, members can be accessed
using dot operator (.)
(*pt?bookl). = 33

I (*ptrbookl) < bookl I

Note:

(*ptrbookl) . =# | *ptrbookl.

(OO0

Accessing Pointer Members

struct test {
int *vall;
int *val2;

b g

Shows the address of the

struct test testvar; }
pointer member *vall

int a = 10;

testvar.vall = &a; ¥
cout << “Address is” << testvar.vall << endl;
cout << “Walue 1s” << *testvar.vall << endl;

%
Shows the value of the pointer
member *vall, Same as
*(testvar.vall)

(OO0

User-Defined Data Type

new user-defined
‘ keyw\cird ‘ data type

typedet tipe new—-type;

 standard data type - int, float

* user-defined data type - structures

Typedef float Volyme; Volume IS a user-defined
~ data type equivalent to type

Volume boxl, bo><2<_;S float |
float boxl, box2 ;e Both are equivalent

(OO0

User-Defined Data Type (struct)

“‘Template” name ‘
!
typedetf struct type new-

type;

typedef struct {

°
4

°
4

} new—-type;

(OO0

User-Defined Data Type (struct)

typedet struct {

char c
char o
char e
int ;

} Record;

Record bookl, bookZ2;

(OO0

User-Defined Data Type (struct)

typedef struct {
int
int
int

} Date;

typedef struct {
char
char
char
int
Date
} Record;

Record books[100];

(OO0

Using Structures with Functions -

* Passing individual structure members

— pass by value

* Passing an entire structure

— pass by value

e Passing a pointer to a structure
— pass by reference

(OO0

Passing Individual Structures Members

#include <iostream>
vold printDate (int day, int month, int year);

vold printDate(int day, int

typedef struct f{ month, int year)

int ; {

int ' cout << " Day = " << day;

L ’ cout << "Month = " << month;
ji Date; cout << " Year = " << year <<

| endl;

int main () }
{

Date returndate = {3, 12, 2015};

printDate (returndate. , returndate. ,
returndate.) 5

return 0O;

}
(QOSE

@080

Passing an Entire Structure

#include <iostream>
Using namespace std;
vold printDate (Date) ; {

typedef struct {
int ;
int ;
int ;

} Date;

int main () }

{

Date borrowdate {13,
printDate (borrowdate) ;

return 0O;

vold printDate (Date returndate)

cout << " Day <<
returndate.day;
cout << "Month
returndate.month;
cout << " Year
returndate.year

<< endl;

<<

<<

3, 2015};

ocw.utem.edu.m

Passing a Pointer to a Structure

#1§clud§ <lostream> void printDate (Date *brwPtr)
void printDate (Date *); {

cout << " Day = " <<
typedef struct { brwPtr->day;
}nt 5 cout << "Month = " <<
}nt ; brwPtr->month;
int ; cout << " Year = " <<
} Date; brwPtr->year
<< endl;

int main () }

{
Date borrowdate = {13, 3, 2015};

printDate (&borrowdate) ;

return 0O;

}

(OO0

Example

* Imagine a scenario where you’re asked to
write a program that stores records of 100

employees
e Each records contains
— Staff ID (1nt)
— Staff Name (char [60])
— Gender (char)

(OO0

Storage Method - Without Structure

The use of a 2D
array.

Requires special
attention and is
much more difficult

#define MAXRECORDS 100

int employee ID[MAXRECORDS]; |
char employee Name [MAXRECORDS] [60];
char employee Gender [MAXRECORDS] ;

to handle.
01 2 3 100
employee ID crrer 11

employee Name

employee Gender [
ocw.utem.edu.m

Storage Method — Without Structure

Employee

Name Gender

Uses 3 different array to store each item in the record.

Not intuitive. Imagine using one file to store IDs, one to store names
and another to store genders.

ocw.utem.edu.m

Storage Method — With Structure

employee

| 1D
#define MAXRECORDS 100 0 01 2 ... 60
Name ﬁ
EypedCEl SERICE Gender [N

int ID; B
char Name[80]; 1D
char Gender; . 01 2 60
} Record; Name
Gender [

Record employee [MAXRECORDS];

1D
100 01 2 ... 60
Name ﬁ
Gender [

(OO0

Storage Method — With Structure

Employee

1D

Name

Gender

A

Uses an array of structure. The data is stored as the member of the
structure.

Simple and easy. Very intuitive, as it is similar to how we store hardcopy
records using file.

(OO0

Access Method - Without Structure

Function to print the info of a employee:
vold printEmployee (int 1d, char *name, char gender) {
cout << “Employee Id:” << 1d << endl;
cout << “Name:” << name << endl;
cout << “Gender:” << gender << endl;

Needed to state all the data in the function individually.
Tedious and error-prone.

Statements to print all the employees using printEmployee:
int 1i;
for (1i=0; 1 < MAXRECORDS; i++)
printEmployee (employee IDI[1],
sgemployee Name[1] [0],employee Gender[i]);
4
| Needed extra attention due to the use of 2D array. |

(OO0

Access Method — With Structure

Function to print the info of an employee:
vold printEmployee (Record employee) {

cout << “Employee Id:” << employee. << endl;
cout << “Name:” << employee. << endl;
cout << %“Gender:” << employee. << endl;

Statements to print all the employees using printEmployee:
int 1,
for (1=0; 1 < MAXRECORDS; i++)
printEmployee (employee[1]) ;

The whole structure can be passed into the function directly.
Simple and easy

(OO0

Self-Review Questions

Question 1

Determine whether the following statements are valid or not?

a)

struct tax

char names;

float bills;

b)
struct class {
char student;

int number of student;

}

struct math({

float marks;

struct class record;
}test, final;

ocw.utem.edu.m

Self-Review Questions

Answer:
a) b)
struct tax {//complete the struct class {
code here char student;
char names; int number of student;

float bills; bi

}; //complete the code here struct math{

Answer: Invalid float marks;
struct class record;

}test, final;

Answer: Valid

ocw.utem.edu.m

Self-Review Questions

Question 2
State the different between this two structure

struct product sale;
struct product *sale;

(OO0

eI

Self-Review Questions

Answer:

struct product sale;

Answer: normal variable

struct product *sale;

Answer: pointer variable

(OO0

Self-Review Questions

Question 3
Complete the program below to display the result as shown.

#include <stdio.h>
#include <string.h>

Result
typedef struct BETC1353

{ . .
char student [60]; Name IS: Ramlee
ceoorar Mark is: 90.30

} record;

int main ()
{
record test;
strcpy (test.student, "Ramlee");
test.mark=90.3;
return 0;

(OO0

eI

Self-Review Questions

Answer:

#include <stdio.h>
#include <string.h>

typedef struct BETC1353
{
char student [60];
float mark;
} record;

int main ()
{
record test;
strcpy (test.student, "Ramlee");
test.mark=90.3;
printf ("Name is: %s \n“, test.student);
printf ("Mark is: %f\n", test.mark);
return 0;

}

(OO0

Self-Review Questions

* You are asked to write a program to stores the
information of one patient in a Clinic Malaya

* The records contains:
a. Patient Name : Aina Mardiana
b. Patient ID : 12345
c. Patient Contact Number: 0123456789

(OO0

Self-Review Questions

#include <iostream>
using namespace std;

struct patient {

Y

char :
int ;
int ;

int main ()

{

struct patient index;
index.name = "Aina Mardiana'";
index.ID = 12345;
index.number = 0123456789;

cout<<"Name: "<<index.name<<'\n';
cout<<" ID number: "<<index.ID<<'\n';
cout<<" Telephone number: "<<index.number;

return 0O;

@080

ocw.utem.edu.m

eI

