NUMERICAL METHODS BEKG2452 NUMERICAL DIFFERENTIATION (Second Derivative)

Irma Wani Jamaludin¹, Ser Lee Loh²

¹irma@utem.edu.my, ²slloh@utem.edu.my

Learning Outcomes

At the end of this topic, student should be able to:

1. Find the second derivative of a function by using forward, backward and central difference approximation.

2. Find the second derivative of a function by using high accuracy differentiation formula.

Numerical Differentiation

(Estimating the derivative of a function at a specific point)

Forward, Backward, Central Difference Approximation of First Derivatives

Forward, Backward, Central **Difference Approximation of Second Derivatives**

Taylor Series Expansion / Interpolation

Forward D.A.

Backward D.A.

Centered D.A. High Accuracy F.D.A.

High Accuracy B.D.A.

High Accuracy C.D.A.

Accuracy O(h):

Accuracy $O(h^2)$:

Accuracy $O(h^4)$:

Forward D.A.

Backward D.A.

Centered D.A.

High Accuracy F.D.A.

High Accuracy B.D.A.

High Accuracy C.D.A.

Accuracy O(h):

Accuracy $O(h^2)$:

Accuracy $O(h^4)$:

5.4 Finite Divided Difference Approximations

 Taylor series expansions can be used to derive finite-divided-difference approximations of derivatives.

$$f(x_{i+1}) = f(x_i) + f'(x_i)(x_{i+1} - x_i) + \frac{f''(x_i)}{2!}(x_{i+1} - x_i)^2 + \dots + \frac{f^{(n)}(x_i)}{n!}(x_{i+1} - x_i)^n + R_n$$

5.4 Finite Divided Difference Approximations

 The second derivative of a function/ a set of data can be obtained by using:

- forward difference approximation
- backward difference approximation
- centered difference approximation
- high-accuracy difference formulas

 \triangleright Forward difference approximation, O(h)

$$f'' \approx \frac{1}{h^2} [f(x) - 2f(x+h) + f(x+2h)]$$

Example

Use forward difference approximation to estimate the second derivative of:

$$f(x) = 0.13x^5 - 0.75x^3 + 0.12x^2 - 0.5x + 1$$

at x = 0.5 and step size of h = 0.25.

Find the percentage of relative error if the solution f''(0.5) is -1.685.

Solution

$$x = 0.5$$
 $\longrightarrow f(x) = 0.6903$
 $x+h = 0.75$ $\longrightarrow f(x+h) = 0.4069$
 $x+2h = 1$ $\longrightarrow f(x+2h) = 0$

•
$$f'' \approx \frac{1}{h^2} [f(x) - 2f(x+h) + f(x+2h)]$$

$$f''(0.5) = \frac{1}{0.25^2} [0.6903 - 2(0.4069) + 0]$$

$$= -1.976$$

Percentage of relative error =
$$\frac{|-1.685 - (-1.976)|}{|-1.685|} \times 100\% = 17.27\%$$

 \triangleright Backward difference approximation, O(h)

$$f''(x) \approx \frac{1}{h^2} [f(x-2h) - 2f(x-h) + f(x)]$$

Example

Use backward difference approximation to estimate the second derivative of:

$$f(x) = 0.13x^5 - 0.75x^3 + 0.12x^2 - 0.5x + 1$$

at x=0.5 and step size of h=0.25. Hence, calculate the percentage of relative error.

Solution

$$x = 0.5$$
 $\longrightarrow f(x) = 0.6903$
 $x - h = 0.25$ $\longrightarrow f(x - h) = 0.8709$
 $x - 2h = 0$ $\longrightarrow f(x - 2h) = 1$

•
$$f''(x) \approx \frac{1}{h^2} [f(x-2h) - 2f(x-h) + f(x)]$$

$$f''(0.5) = \frac{1}{0.25^2} [1 - 2(0.8709) + 0.6903]$$

$$= -0.824$$

Percentage of relative error =
$$\frac{|-1.685 - (-0.824)|}{|-1.685|} \times 100\% = 51.1\%$$

 \triangleright Centered difference approximation, $O(h^2)$

$$f''(x) \approx \frac{1}{h^2} [f(x+h) - 2f(x) + f(x-h)]$$

Example

Use centered difference approximation to estimate the second derivative of:

$$f(x) = 0.13x^5 - 0.75x^3 + 0.12x^2 - 0.5x + 1$$

at x = 0.5 and step size of h = 0.25.

Solution

$$x = 0.5$$
 $\longrightarrow f(x) = 0.6903$
 $x + h = 0.75$ $\longrightarrow f(x + h) = 0.4069$
 $x - h = 0.25$ $\longrightarrow f(x - h) = 0.8709$

•
$$f''(x) \approx \frac{1}{h^2} [f(x+h) - 2f(x) + f(x-h)]$$

$$f''(0.5) = \frac{1}{0.25^2} [0.4069 - 2(0.6903) + 0.8709]$$
=-1.6448

Percentage of relative error =
$$\frac{|-1.685 - (-1.6448)|}{|-1.685|} \times 100\% = 2.39\%$$

Example

Given the following data

t	1	2	3	4	5	6	7
f(t)	-1.8	-3.8	4.2	34.2	103	232.2	448.2

Calculate f''(4) with step size of 1 by using forward and backward difference approximation of O(h) and centered difference approximation of $O(h^2)$.

Solution

$$t = 4$$
 $\longrightarrow f(t) = 34.2$
 $t + h = 5$ $\longrightarrow f(t + h) = 103$
 $t + 2h = 6$ $\longrightarrow f(t + 2h) = 232.2$
 $t - h = 3$ $\longrightarrow f(t - h) = 4.2$
 $t - 2h = 2$ $\longrightarrow f(t - 2h) = -3.8$

Forward difference approximation, O(h)

$$f'' \approx \frac{1}{h^2} [f(t) - 2f(t+h) + f(t+2h)]$$
$$f''(4) = \frac{1}{1^2} [34.2 - 2(103) + 232.2] = 60.4$$

Solution (cont.)

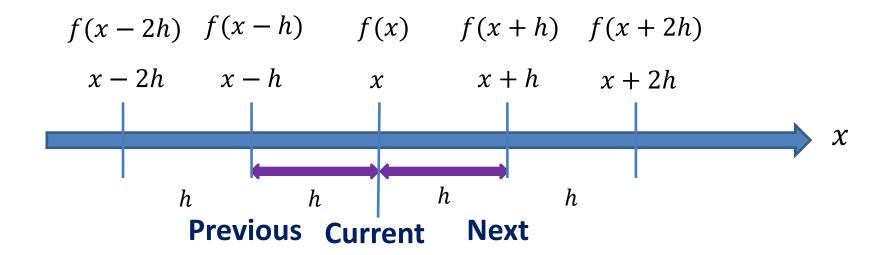
Backward difference approximation, O(h)

$$f''(t) \approx \frac{1}{h^2} [f(t-2h) - 2f(t-h) + f(t)]$$
$$f''(4) = \frac{1}{1^2} [-3.8 - 2(4.2) + 34.2] = 22$$

Centered difference approximation, O(h²)

$$f''(t) \approx \frac{1}{h^2} [f(t+h) - 2f(t) + f(t-h)]$$
$$f''(4) \approx \frac{1}{1^2} [103 - 2(34.2) + 4.2] = 38.8$$

Time Line:



Step size: *h*

Exercise

Given a function

$$f(t) = 2e^{\cos 3t}.$$

Use forward and backward difference approximation of O(h) and centered difference approximation of $O(h^2)$ to approximate f''(0.7) with step size of 0.1.

ANSWER:

Forward= 10.3596; Backward= 16.6756; Centered= 13.5844

 \bullet Forward difference approximation, $O(h^2)$

$$f''(x) \approx \frac{1}{h^2} \left[-f(x+3h) + 4f(x+2h) - 5f(x+h) + 2f(x) \right]$$

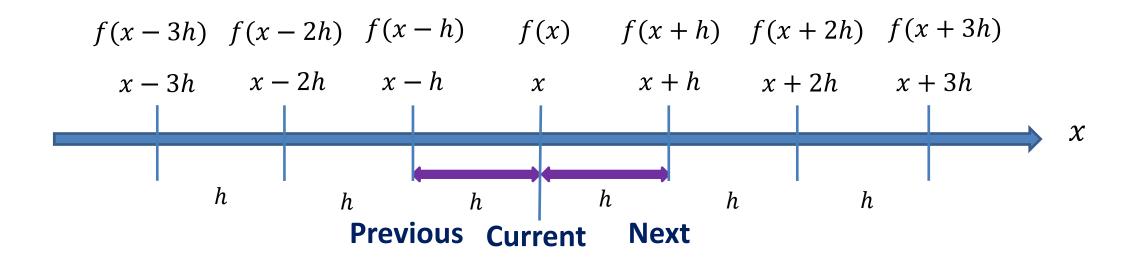
 \clubsuit Backward difference approximation, $O(h^2)$

$$f''(x) \approx \frac{1}{h^2} [2f(x) - 5f(x - h) + 4f(x - 2h) - f(x - 3h)]$$

 \diamond Centered difference approximation, $O(h^4)$

$$f''(x) \approx \frac{1}{12h^2} \left[-f(x+2h) + 16f(x+h) - 30f(x) + 16f(x-h) - f(x-2h) \right]$$

Time Line:



Step size: *h*

Example

Use high accuracy difference approximation to estimate the second derivative of:

$$f(t) = 4e^{\sin 2t} - 1$$

at x = 0.5 and step size of h = 0.1.

Solution

$$f(t) = 4e^{\sin 2t} - 1$$

t	0.2	0.3	0.4	0.5	0.6	0.7	0.8
f(t)	4.9045	6.0353	7.1960	8.2791	9.1587	9.7161	9.8685

• Forward difference, $O(h^2)$

$$f''(t) \approx \frac{1}{h^2} \left[-f(t+3h) + 4f(t+2h) - 5f(t+h) + 2f(t) \right]$$
$$f''(0.5) = -23.9665$$

Solution (cont.)

Backward difference, O(h²)

$$f''(t) \approx \frac{1}{h^2} [2f(t) - 5f(t - h) + 4f(t - 2h) - f(t - 3h)]$$

$$f''(0.5) = -18.5345$$

Centered difference, O(h⁴)

$$f''(t) \approx \frac{1}{12h^2} \left[-f(t+2h) + 16f(t+h) - 30f(t) + 16f(t-h) - f(t-2h) \right]$$
$$f''(0.5) = -20.4027$$

Example

Given the following data

t	1	2	3	4	5	6	7
f(t)	-1.8	-3.8	4.2	34.2	103	232.2	448.2

Use forward and backward difference approximation of $O(h^2)$ and centered difference approximation of $O(h^4)$ to find f''(4) with h=1. Find the percentage of relative error for each approximations if the true value is 38.4.

Solution

t	1	2	3	4	5	6	7
f(t)	-1.8	-3.8	4.2	34.2	103	232.2	448.2

• Forward difference, $O(h^2)$

$$f''(t) \approx \frac{1}{h^2} [-f(t+3h) + 4f(t+2h) - 5f(t+h) + 2f(t)]$$
$$f''(4) \approx \frac{1}{1^2} [-f(7) + 4f(6) - 5f(5) + 2f(4)]$$
$$f''(4) = 34$$

Percent relative error =
$$\frac{|38.4-34|}{38.4} \times 100\% = 11.46\%$$

Solution (cont.)

t	1	2	3	4	5	6	7
f(t)	-1.8	-3.8	4.2	34.2	103	232.2	448.2

Backward, O(h²)

$$f''(t) \approx \frac{1}{h^2} [2f(t) - 5f(t - h) + 4f(t - 2h) - f(t - 3h)]$$
$$f''(4) \approx \frac{1}{1^2} [2f(4) - 5f(3) + 4f(2) - f(1)]$$
$$f''(4) = 34$$

Percent relative error =
$$\frac{|38.4-34|}{38.4} \times 100\% = 11.46\%$$

Solution (cont.)

t	1	2	3	4	5	6	7
f(t)	-1.8	-3.8	4.2	34.2	103	232.2	448.2

Centered, O(h⁴)

$$f''(t) \approx \frac{1}{12h^2} \left[-f(t+2h) + 16f(t+h) - 30f(t) + 16f(t-h) - f(t-2h) \right]$$

$$f''(4) \approx \frac{1}{12(1^2)} \left[-f(6) + 16f(5) - 30f(4) + 16f(3) - f(2) \right]$$

$$f''(4) = 38.4$$

Percent relative error =
$$\frac{|38.4 - 38.4|}{38.4} \times 100\% = 0\%$$

Exercise 1

Given a function

$$f(t) = 2e^{\cos 3t}.$$

Use forward and backward difference approximation of O(h) and centered difference approximation of $O(h^2)$ to approximate f''(0.7) with step size of 0.1. Suppose the true value is 13.5807. Calculate the percent relative error for each method.

ANSWER:

Forward=12.6984, ϵ = 6.5%; Backward=15.9764, ϵ =17.64%; Centered=13.5955, ϵ =0.11%

Exercise 2

Given that

X	1.6	1.7	1.8	1.9	2.0	2.1	2.2	2.3
f(x)	24.5325	29.9641	36.5982	44.7012	54.5982	66.6863	81.4509	99.4843

Use the high accuracy forward and backward difference approximation of $O(h^2)$ and centered difference approximations of $O(h^2)$ and $O(h^4)$ of the second derivatives formula to estimate f''(2.0) using h = 0.1.

ANSWER:

Forward=208.42; Backward=211.91; Centered=218.37

Exercise 3

Given a function

$$f(t) = t \cos t$$
.

Use approximation of $O(h^2)$ and $O(h^4)$ to find f''(2.0) with step size h=0.2.