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At the end of this topic, students should be able to:
 Differentiate the function by using chain rule
 Differentiate the logarithmic functions
 Differentiate the exponential functions

LEARNING OUTCOMES



 When dealing with composite functions such as                    , the power rule 
of differentiation alone is not sufficient because composite function by 
their nature of being “functions of other function”, tend to be complicated. 
This is where the Chain Rule could be useful.

 Let                          
then

 In other words, we would need to differentiate the outside function    and 
multiply the result with the derivative of the inside function         .   

THE CHAIN RULE??
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Differentiate

EXAMPLE 1
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SOLUTION 1
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Let                  , then           . From here we can get                  and

What we need here is not        or       although they will prove useful shortly. 

We really need      . This is where the Chain Rule steps.   
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 Is there a shorter way of solving the composite function and still use
the Chain Rule.

 By using question from Example 1 then the solution is

Chain Rule in Other Way
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The Chain Rule                        has been 

retained throughout this solution. 
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Differentiate by using Chain Rule.

EXAMPLE 2

3 321 xxy 



SOLUTION 2

Let                     , then           . The derivative of this functions are

By using Chain Rule     
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SOLUTION 2

A shorter version of the Chain Rule is recommended and is as follows

Then,
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By using Chain Rule, find the derivative of .

EXAMPLE 3
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SOLUTION 3

A shorter version of the Chain Rule applied to this question
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Applied the quotient rule to 

differentiate this part.



 The Chain Rule is applicable to all functions including trigonometric
functions.

 A quick summary of trigonometric functions would be appropriate at
this moment.









Chain Rule in Trigonometric Functions
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Find the derivative of the following functions

a)

b)

c)

EXAMPLE 4
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SOLUTION 4

a) Let

then 
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SOLUTION 4

b) Let

then 
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SOLUTION 4

c)

Let                , then                . Therefore                   and

hence,

xu 
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The most useful logarithm is the natural logarithm, that is logarithm to the 
base exponential often denoted by

If                 , then

Since                  correspond to          , then    . Therefore                     .

For                          , then                     .  

Differentiation of Logarithmic 

Functions
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Differentiate by using Chain Rule.

EXAMPLE 5

 521ln xy 



SOLUTION 5

Let                  , then             . Therefore                    and            .  521 xu 

By using Chain Rule:
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Find the derivative of .

EXAMPLE 6

 xy 2cos1ln 



SOLUTION 6

Let                     , then             . Therefore                                   and             .  xu 2cos1

By using Chain Rule:
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SOLUTION 6

You can shortest the step as follows:   
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Find the derivative of the following functions:

a)

b)

EXAMPLE 7
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SOLUTION 7

a) Differentiation    using quotient rule would be a tedious affair. It would be  

much easier if we use the law of logarithm as follows:  
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SOLUTION 7

b)  To differentiate this function , we taking logarithm (to 

base exponential) of both sides. 
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Generally exponential function can be written as where is a positive
constant. The number is called the base of the exponential function. There
is a particularly unique base with the value . This base is
given the symbol by mathematicians and the exponential function can simply
be written as .

Differentiation of Exponential 

Functions
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 Let           and to differentiate this function requires only two simple steps.                   
 First step, copy the given function
 Second step, cover up the base and differentiate the exponent (or

power) with respect to . Now multiply your answer to step 1 with
your answer to step two and you would obtain the derivative of .

 To summaries the steps are:




Derivative of Exponential Functions
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Find the derivative of the following functions:

a)

b)

c)

EXAMPLE 8
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SOLUTION 8

a) b) 
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SOLUTION 8

c)  
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Differentiate the following function by using Chain Rule, .

a)

b)

c)

TRY IT YOURSELF 1
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Solution

a)

b)

c)
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Differentiate the following function.

a)

b)

c)
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TRY IT YOURSELF 2
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Solution

a)

b)

c)

d)

e)
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