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By the end of this topic, students are able to:
 Define differentiation from geometrical meaning.
 Understand the definition and rules of differentiation.
 Able to solve higher order differentiation.

LEARNING OUTCOMES



Concept of Differentiation

Baldwin Street, Dunedin (NZ) was known as the world’s
steepest residential street. It was even got recognition
from Guiness Book of Records. This is because not only
the road were tilted, but the house built there was also
have the same pattern. Our main attention was how much
sloppy was the area.

This problem can be turned into a graphical situation, to
make the analysis become easier.
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Geometrical Meaning of Differentiation

We will use the formula of gradient from a straight line equation, where

h is the distance from a point, then we will have

To find the value of m, take limit as small as possible (x approaches 0), the
equation will become

This was known as our First Principle of Differentiation.
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• Differentiation is a mathematical tool used to 
study rates of change.

• Differentiation is the process of finding a 
derivative.

• Common notations for derivative are:

DEFINITION
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Definition & Rules of Differentiation



FIRST PRINCIPLE

Basic concept of Differentiation:
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 Write an expression for

 Write an expression for

 Substitute and into the formula

 Simplify the expression.

 Evaluate

STEPS IN FIRST PRINCIPLE
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Use the first principle to find the derivative of the following 

functions

(a)

(b)

(c)
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Solution: (a)

Write an expression for  f(x)

Write an expression for f(x+h) 

Substitute f(x) and

f(x+h)

Simplify 

Evaluate & Answer
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Solution: (b)
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Solution: (c)



Try Yourself 1 

Use the first principle to find the derivative, f ’(x) of the 

following functions.
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ANSWER :
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(b)
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RULES OF DIFFERENTIATION

3.  Constant Multiple Rule 

If c is any real numbers, and 
f(x) is a function, then 
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2.  The Power Rule

If n is a positive integer, then 
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1.  Derivative of a constant 

If c is any real numbers, then 
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4.  Sum and Difference Rules

If f and g are differentiable 
by x, then
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5.  Derivative of Trigonometric Functions
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6.  Derivative of Exponential Functions
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To find derivative of product of a 
function                            ,

8.  Product Rule
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9.  Quotient Rule
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Differentiate the following functions.
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Solution: (a)
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Solution: (b)
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Solution: (c)
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Find      of the following functions.

(a) (e)

(b) (f)

(c) (g)
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Find      of the following functions.

(a) (e)

(b) (f)

(c)                 (g)

(d) (h)
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(b) (f)

(c) (g)
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Higher Order Derivative



Find          for each of the following.
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Solution: (a)

Differentiate with respect to x , 

simplify the answer obtained
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Solution: (a)

Differentiate with respect to x , 

simplify the answer obtained
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Solution: (a)

Differentiate with respect to x , 

simplify the answer obtained
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Differentiate again with respect to x , 

simplify the answer obtained
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Find            for each of the following.

(a)                    (d)
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