

OPENCOURSEWARE

BETM 3583

Vibration Analysis and Monitoring

Ahmad Yusuf Ismail¹
Mohd Afdhal bin Shamsudin²
Nur Rashid bin Mat Nuri @ Md Din³
Muhamad Azwar bin Azhari⁴

¹ahmadyusuf.ismail@utem.edu.my

²afdhal@utem.edu.my

³nrashid@utem.edu.my

⁴azwar@utem.edu.my

ocw.utem.edu.my

Contents

- 1. Probability distribution & density
- 2. Fourier Analysis
- 3. Cepstrum Analysis

Learning Outcome

- 1. Understand the concept and application of Probability distribution and density
- 2. Understand the concept and application of Fourier Analysis
- 3. Understand the concept and application of Cepstrum analysis

In Topic 2 → Random Vibration

To characterize random signals in the way of their instantaneous value is distributed can be expressed in terms of "Probability Distribution"

What is Probability?

Concept of probability \rightarrow

In a short run, chance behavior can be unpredictable, But in long run, it can have a regular and predictable pattern.

So, Probability \rightarrow the proportion of times an interest outcome will occur in long repetition series.

Probability Distribution

A probability of a measureable subset to occur in a random experiments.

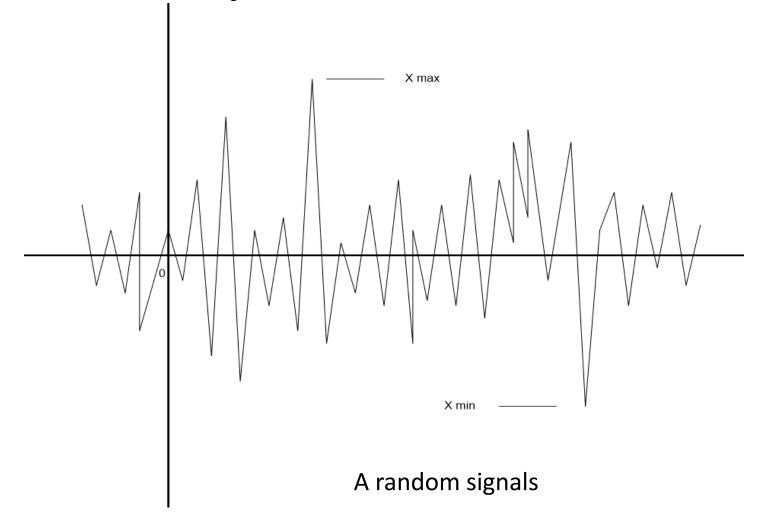


Figure above shows a typical random signals

Minimum value : x_{min}

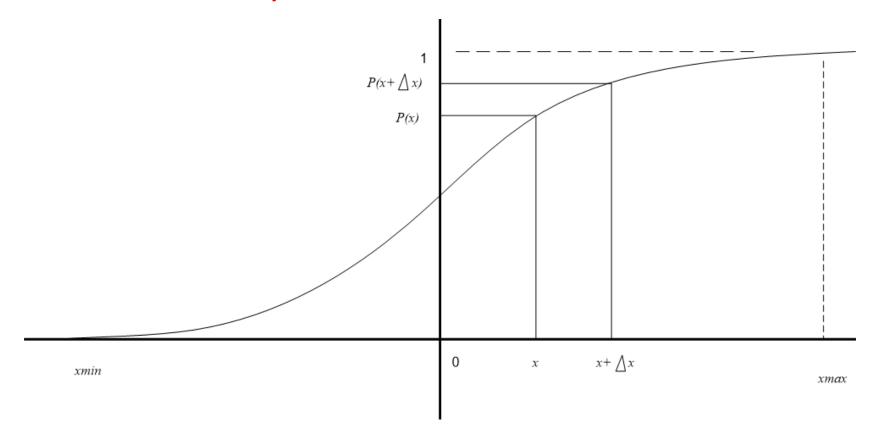
Maximum value : x_{max}

Probability:

$$P(x) = \Pr[x(t) \le x]$$

Probability of a particular sample is less than or equal to x.

P(x) must have Probability distribution form:



Probability density p(x) is given by:

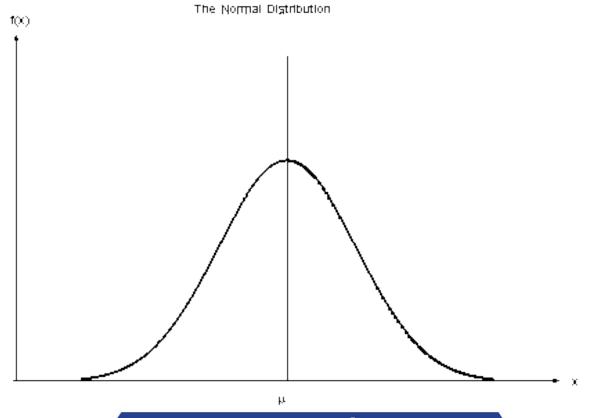
$$p(x) = \lim_{\Delta x \to 0} \frac{P(x + \Delta x) - P(x)}{\Delta x} = \frac{dP(x)}{dx}$$

Since p(x) is derivation of P(x) over dx,:

$$\int_{-\infty}^{\infty} p(x)dx = \int_{-\infty}^{\infty} dP(x) = [P(\infty) - P(-\infty)] = 1$$

Evident that the total area under the curve must always be one.

For the so-called Gaussian Random Signals, the probability density function is given by :



Gaussian Random Signals -> Statistical Parameter

Mean Value

$$\mu = \int_{-\infty}^{\infty} x p(x) dx$$

At the line of simmetry

Gaussian Random Signals → Statistical Parameter

Variance

$$\sigma^2 = \int_{-\infty}^{\infty} [x - \mu]^2 p(x) dx$$

This is 'moment inertia' about the mean value

Gaussian Random Signals → Statistical Parameter Skewness

$$S = \frac{\int_{-\infty}^{\infty} [x - \mu]^3 p(x) dx}{\sigma^3}$$

Zero (0) for symmetrical function and large for assymmetrical function

Gaussian Random Signals -> Statistical Parameter

Kurtosis

$$K = \frac{\int_{-\infty}^{\infty} [x - \mu]^4 p(x) dx}{\sigma^4}$$

Large for 'Spiky' signals

Fourier Analysis

Fourier Analysis is used to express signals as a summation of sinusoidal components.

In machine vibration analysis \rightarrow it is used for periodic signals (machine rotating with constant speed)

For a periodic signal g(t) with period T

$$g(t) = g(t + nT)$$

It is given that

$$g(t) = \frac{a_o}{2} + \sum_{k=1}^{\infty} a_k \cos(k\omega_o t) + \sum_{k=1}^{\infty} b_k \sin(k\omega_o t)$$

For a periodic signal g(t) with period T

$$g(t) = g(t + nT)$$

It is given that

$$g(t) = \frac{a_o}{2} + \sum_{k=1}^{\infty} a_k \cos(k\omega_o t) + \sum_{k=1}^{\infty} b_k \sin(k\omega_o t)$$

where

$$a_k = \frac{2}{T} \int_{-T/2}^{T/2} g(t) \cos(k\omega_o t) dt$$

$$b_k = \frac{2}{T} \int_{-T/2}^{T/2} g(t) \sin(k\omega_0 t) dt$$

The total component at frequency is ω_k

$$\omega_k = k\omega_o = a_k \cos(k\omega_k t)dt + b_k \sin(k\omega_k t)dt$$

Or can be written as

$$C_k \cos(\omega_k t + \phi_k)$$

Where

$$C_k = \sqrt{a_k^2 + b_k^2}$$

And

$$\phi_k = \tan^{-1} \left(\frac{b_k}{a_k} \right)$$

Cepstrum Analysis

Cepstrum Analysis

Cepstrum Analysis

Cepstrum Analysis

→ Results of Inverse Fourier Transform

Useful to differentiate multiple faults which is impossible/difficult to be seen in common Spectrum/FFT/others

Cepstrum Analysis

Cepstrum Analysis

Can be used for:

- 1. Gearbox monitoring and rolling element bearing
- Gearbox testing
- 3. Bearing fault
- 4. Echo detection
- 5. Speech analysis

Thank you

QnA

