CALCULUS FOR TECHNOLOGY (BETU 1023)

WEEK 6

GRADIENT OF CURVE AT POINT AND MAXIMUM MINUMUM

¹KHAIRUM BIN HAMZAH, ²IRIANTO, ³ABDUL LATIFF BIN MD AHOOD, ⁴MOHD FARIDUDDIN BIN MUKHTAR

1khairum@utem.edu.my, 2irianto@utem.edu.my, 3latiff@utem.edu.my, 4fariduddin@utem.edu.my

Table of Content

- Gradient
 - Tangent Line
 - Gradient and First Derivatives
- Maximum Minimum
 - Absolute Optimum
 - Local Optimum
 - Critical Numbers
 - Increasing and Decreasing function

Gradient

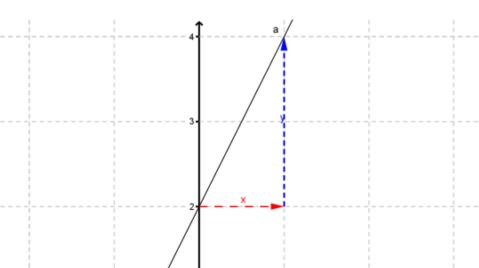
Let f(x), be a linear function, such that:

$$f(x) = ax + b$$

a is called slope, and b is called intercept.

Slope is also know as *gradient* is a number that represent how slanted is our linear function, and denoted by m.

$$f(x) = 2x + 2$$



For the function above the gradient is 2, so:

$$m = 2 = \frac{2}{1} = \frac{\Delta y}{\Delta x}$$

 Δy is called the difference of y, and Δx is the difference of x. If you see from the figure beside, every time x change 1 unit the number of y will change with 2 units.

Tangent Line

Definition:

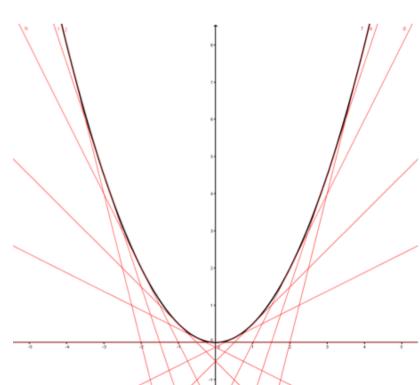
Let f(x) is a differentiable non linear function for $\forall x \in R$, **tangent** line at given point is a straight line that touch curve f(x) exactly at that point.

$$f(x) = \frac{x^2}{2}$$

The red lines on figure beside are some example of tangent line at some certain points. Tangent lines are never cross the curve $f(x) = \frac{x^2}{2}$, they just "touches" the curve.

As we can see all the tangent lines are linear, means that they can represent in form of;

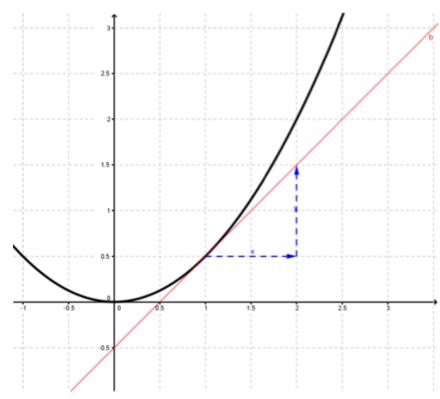
$$mx + b$$



Relation between Tangent Line and First Derivatives

As we can see previously the tangent line has a form of mx + b, this means that every tangent line will have a gradient (m). In the sense of calculus, slope or gradient (m) of tangent line at x = c, is the first derivatives of f(x), m = f'(c)

Find the gradient of tangent line of $f(x) = \frac{x^2}{2}$, when x = 1?



The gradient of tangent line (red line) by definition, using blue line, is

$$m = 1$$

If we find using first derivative we will get

$$f'(x) = x$$
$$m = f'(1) = 1$$

Hence the gradient is the first derivatives of f(x)

Absolute Optimum

Let a be a number, and $a \in S$, and let f(x) is a function. Then f(a) is:

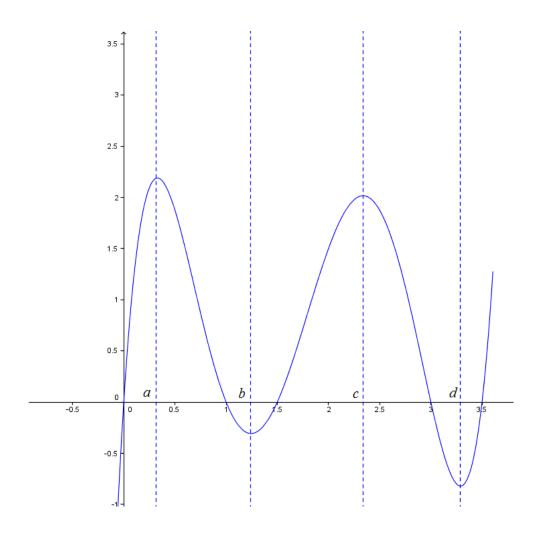
- absolute maximum on S if $f(a) \ge f(x)$ for $\forall x \in S$.
- absolute minimum on S if $f(a) \le f(x)$ for $\forall x \in S$.

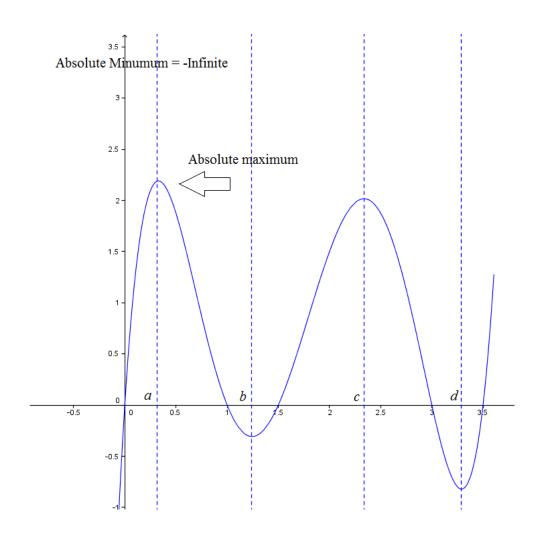
Local Optimum

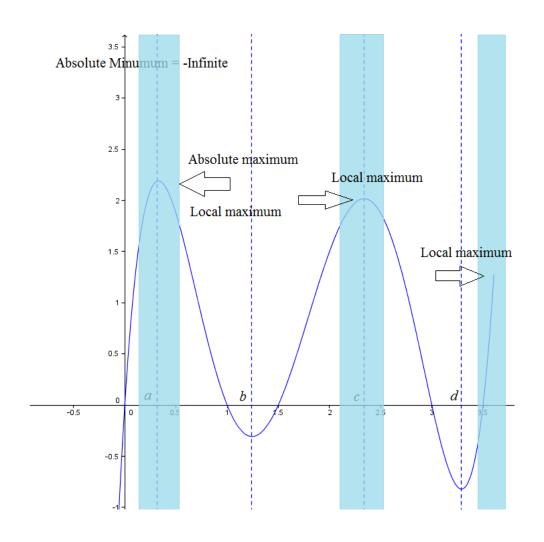
Definition:

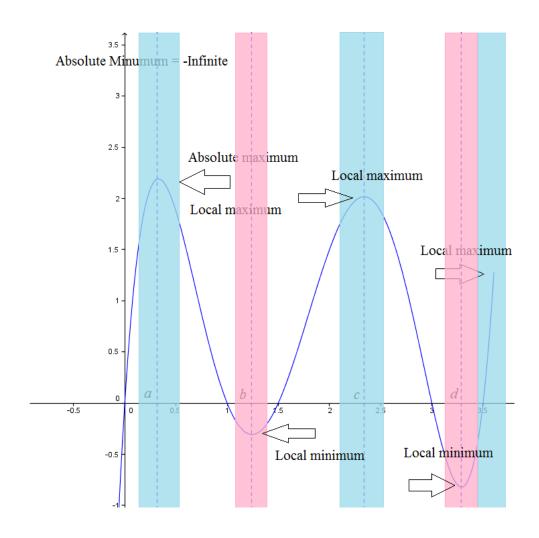
f(a) is a

- **local maximum,** if $f(a) \ge f(x)$ when x near a.
- **local minimum,** if $f(a) \le f(x)$ when x near a.







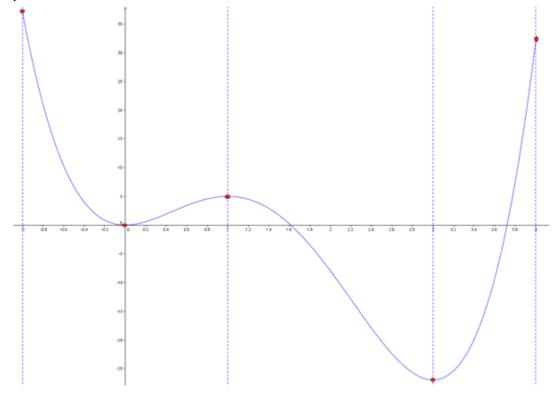


The Extreme Value Theorem

Let f(x) is a continuous function on closed interval [a,b], then f(x) have an absolute maximum value f(c) and absolute minimum value f(d) at some number c and d in [a,b].

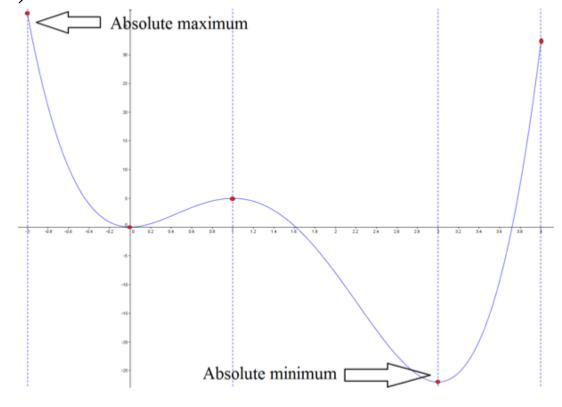
Find the absolute maximum and absolute minimum of

$$f(x)=3x^4-16x^3+18x^2$$
, $-1 \le x \le 4$

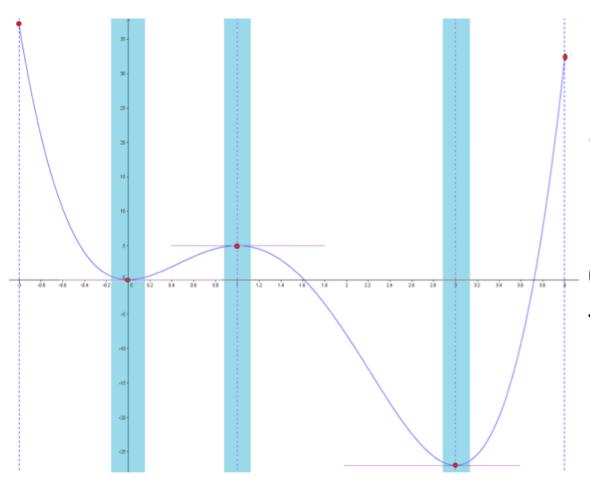


Find the absolute maximum and absolute minimum of

$$f(x)=3x^4-16x^3+18x^2$$
, $-1 \le x \le 4$



Relation Between Local Optimum and Derivatives



Let focus on three optimum points on figure beside. As we can see the tangent lines for all points are **horizontal line**, which mean slope at those points are 0, or if optimum values lies on *c* then,

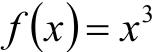
$$f'(c) = 0$$

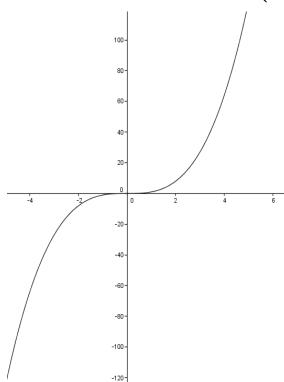
Fermat's Theorem

If f has local minimum or maximum at c, and if f'(c) exist, then f'(c) = 0.

Note: The theorem does not mean that if f'(c) = 0, then f has local maximum or minimum.

Examine the graph of





The first derivatives of the function above is $f'(x) = 3x^2$ and if f'(x) = 0, then we get x = 0. from the graph beside the function is not maximum and not minimum at x = 0, saddle point, so it has shown that: Fermat's theorem does not mean that if f'(c) = 0, then f is local maximum or minimum at c.

Critical Number

Let f be a function and c is a number in the domain of f such that either f'(c) = 0 of f'(c) does not exist, then we called c as **critical number**.

Find all the critical numbers of $f(x) = x^{\frac{3}{5}}(4-x)$

Finding Absolute Maximum and Minimum

The Closed Interval Method

To find the *absolute* maximum and minimum values of a continuous function f on closed interval [a, b]:

- 1. Find the values of f at the critical numbers of f in (a, b).
- 2. Find the values of f at the endpoints of the interval.
- 3. The smallest value from step 1 and 2 is the absolute minimum value; The largest value from step 1 and 2 is the absolute maximum value.

Find the absolute maximum and absolute minimum of

$$f(x) = x^3 - 3x + 1, \qquad -\frac{1}{2} \le x \le 4$$

Increasing/ Decreasing Test

Theorem:

- If f'(x) > 0 on an interval, then f is **increasing** on that interval
- If f'(x) > 0 on an interval, then f is **decreasing** on that interval

Find the interval where the function

$$f(x) = 3x^4 - 4x^3 - 12x^2 + 5$$

is increasing and the interval where it is decreasing.

The First Derivatives Test

Theorem:

Suppose that c is a critical number of a continuous function f.

- If f' change from positive to negative at c, then f has a **local** maximum at c.
- If f' change from negative to positive at c, then f has a **local** minimum at c.
- If f' does not change sign at c (for example, if f' is positive on both sides of c or negative on both sides), then f has **no local maximum** or **minimum** at c.

Find the local maximum and minimum of

$$f(x) = 3x^4 - 4x^3 - 12x^2 + 5$$

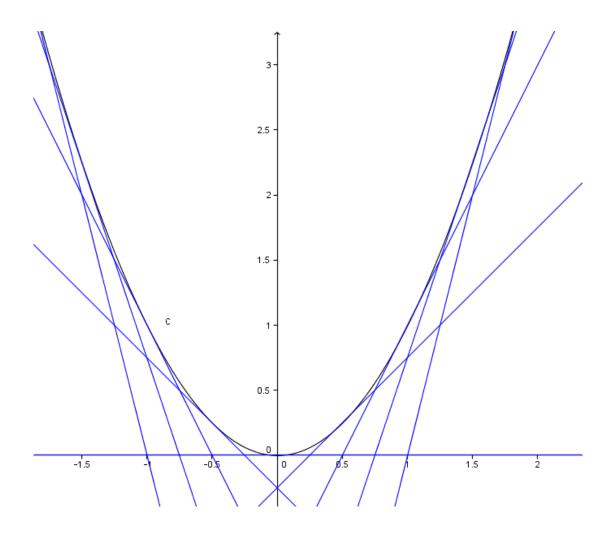
by using the first derivatives test.

Concave

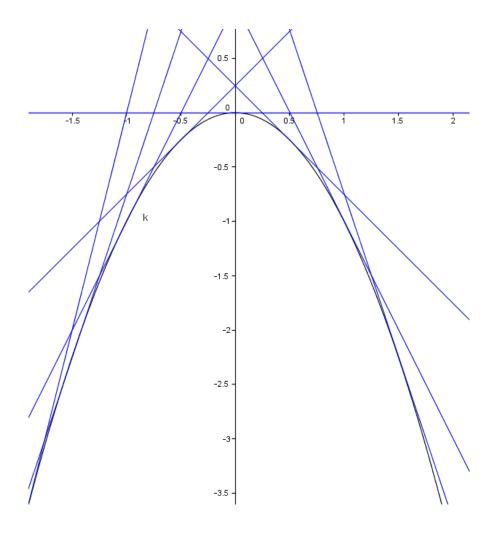
Definition:

- Let f be a graph in the interval I, f is called **concave up** on I if all the tangent line of f inside the interval I lies **above** f.
- Let f be a graph in the interval I, f is called **concave down** on I if all the tangent line of f inside the interval I lies **below** f.

Concave Up



Concave Down



Concavity Test

- A graph is **concave up** on *I*, If f''(x) > 0, $\forall x \in I$.
- A graph is **concave Down** on *I*, If f''(x) > 0, $\forall x \in I$.

Inflection Point

 $P(x_p, y_p)$ on y = f(x) is called an **inflection point** if f is continuous at P and the y change from concave up to concave down or vice versa. If using second derivatives terminology means,

$$f''(x_p) = 0$$

The Second Derivative Test

Let f is continuous function near c.

- If f'(x) = 0 and f''(c) > 0, then at c f(x) is **local minimum**.
- If f'(x) = 0 and f''(c) < 0, then at c f(x) is **local maximum**.

Discuss the curve

$$y = x^4 - 4x^3$$

Summary

- Understand what is Gradient and tangent line.
- Understand the relation between gradient, tangent line, and first derivatives.
- Can find the gradient of tangent line.
- Understand the maximum and minimum values in a function.
- Able to distinguish the local optimum and absolute optimum.
- Able to find critical values.
- Able to find the optimum value of a function using several tests given.

REFERENCES

- James, S. (2012). *Calculus* (7th ed.). Cengage Learning.
- Bivens, I.C., Stephen, D., & Howard, A. (2012). Calculus Early Transcedentals (10th ed.). John Willey & Sons Inc.