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By the end of this topic, students are able to:

Ø Define limit intuitively

Ø Explain the concept of limits at any given point,

Ø Find limit using analytical method

Ø Explain the continuity of a functions

LEARNING OUTCOMES



If     is some function then                  is read “the limit        as 
approaches    is   ”. It means that if you choose values of     close but 
not equal to    , then  will be close to the value   ; moreover,       gets 
closer and closer to    as    gets closer and closer to   .

THE CONCEPT OF 
LIMITS??
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If                     then

Is true because if you substitute numbers     close to 4 in                   the 
result will be close to 7.
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If                     the

We substitute the value as      close to 2, then we can get

Therefore, 
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Limits that exist as     approaches a certain value 

THE EXISTENCE OF A LIMIT
x a

In the graph at            is unbroken. The 
limit exist and is equal to the function 
value;

But at          , limit does not exists. It is 
because;
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In general, we have the following theorem;

where by; 

Ø the symbol                is called a right-hand limit. This expression refers to 

the limit of         for     near to      and greater than    .

Ø the symbol               is called a left-hand limit. This expression refers to 

the limit of          for      near to     and less than   .
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From the given graph, find

EXAMPLE 3
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From the given graph, find
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Basic limits
Ø , where     is constant value

Ø .

LIMITS OF VARIOUS 
FUNCTIONS??
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Limit Rules;

If , and , then;
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Limit Rules;

If , and , then;
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Regarding to zero, 0

PROPERTIES OF NUMBER
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Regarding to infinity, 

PROPERTIES OF NUMBER
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Solving limit problems requires a number of approaches as follows;

Ø Direct substitution provided a definite answer is obtained

Ø If direct substitutions result is indeterminate form, another approaches is 
needed such as:

v Factorization technique

v Multiplication with conjugate

v Divide all the items with the highest power of denominator

v Using trigonometric limit which is                           and

SOLVING LIMIT
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Find the limit (if it exists) for each of the following;

EXAMPLE 4
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SOLUTION 4
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c)

Then we will evaluate the limit using factorization technique 

SOLUTION 4
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Find the limit (if it exists) for each of the following;

EXAMPLE 5
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a) Since indeterminate form, the conjugate multiplication  
technique is used when a radical appears in the function

SOLUTION 5
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b) Since indeterminate form, the conjugate multiplication  
technique is used when a radical appears in the function

SOLUTION 5
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c) Since indeterminate form, the factorization technique will be 
apply to solve this question

SOLUTION 5
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Find the limit of the following (if exists);

EXAMPLE 6
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c)
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a) , indeterminate form then

SOLUTION 6
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b)
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Find the limit of the following (if exists);

EXAMPLE 7
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The basic idea of a continuous function is the graph function is connected, 
except where breaks in the domain occur. For a function to be continuous, 
the limit value must be equal to the function value at          . Three criteria 
must be follows;

Ø is defined

Ø exists

Ø

CONTINUITY OF A 
FUNCTION??
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From the graph below, determine whether         is continuous at; 

EXAMPLE 8
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From the graph below, determine whether         is continuous at; 

a)

not defined
Therefore   is not continuous   
at 
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From the graph below, determine whether         is continuous at; 

b)

Therefore   is not continuous at 
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From the graph below, determine whether         is continuous at; 

c)

Therefore   is continuous at 
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Given

a) Determine whether          is continuous at 

b) Find the value of     such that         is continuous at  

EXAMPLE 9
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a) Determine whether          is continuous at

therefore           is not continuous at    

( )xf 0=x

SOLUTION 9
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b) Find the value of     such that         is continuous at  ( )xfc 2=x

SOLUTION 9
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Evaluate the following limits;

a)

b)

c)

d)

TRY IT YOURSELF 1
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ANSWER

a) -12

b)

c)

d)
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Given

a) Find the value of     such that         is continuous at 

b) Determine whether          is continuous at  
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ANSWER

a)

b) Not continuous

2=k



REFERENCES

ØJames, S. (2012). Calculus (7th ed.). Cengage Learning.
ØBivens, I.C., Stephen, D., & Howard, A. (2012). Calculus Early
Transcedentals (10th ed.). John Willey & Sons Inc.


