

OPENCOURSEWARE

BETM 3583

Vibration Analysis and Monitoring

Ahmad Yusuf Ismail¹
Mohd Afdhal bin Shamsudin²
Nur Rashid bin Mat Nuri @ Md Din³
Muhamad Azwar bin Azhari⁴

¹ahmadyusuf.ismail@utem.edu.my

²afdhal@utem.edu.my

³nrashid@utem.edu.my

⁴azwar@utem.edu.my

ocw.utem.edu.my

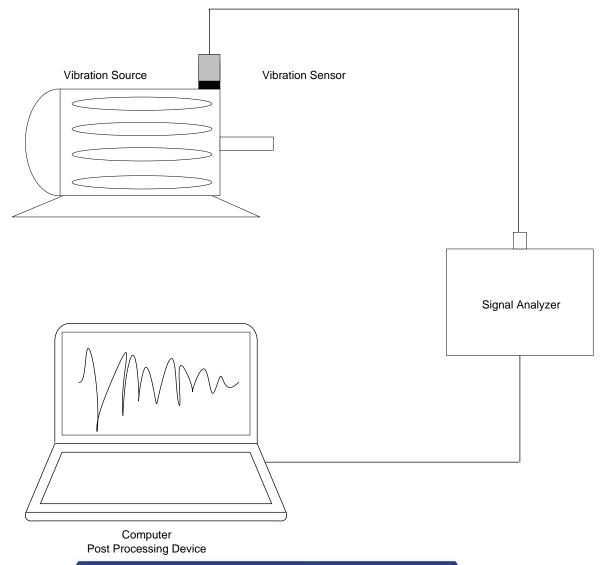
Contents

- 1. Vibration Testing / Measurement
- 2. Experimental modal analysis

Learning Outcome

- 1. Understand the procedure of vibration measurement
- 2. Understand the procedure for modal analysis experiment

Measuring vibration is the most important aspect in the vibration analysis.


Without good data, good result can not be otained.

Good data comes from good measurement.

How to conduct a good measurement?

Making a good measurement involves :

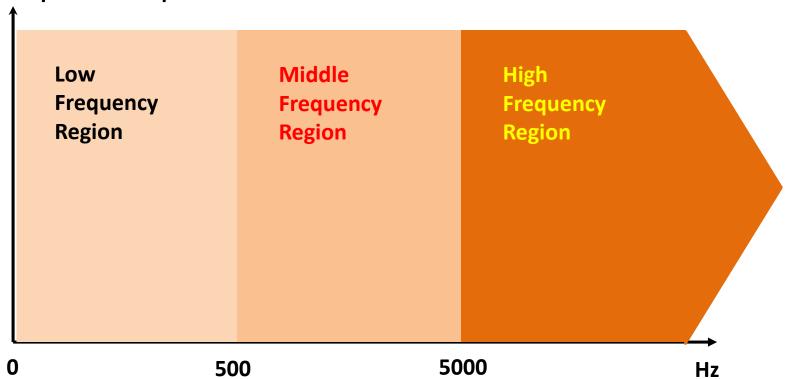
- Selecting the correct transducer

(Accelerometer/Velocity Trans./Displacement Probe)

Selecting the model that suits the environment

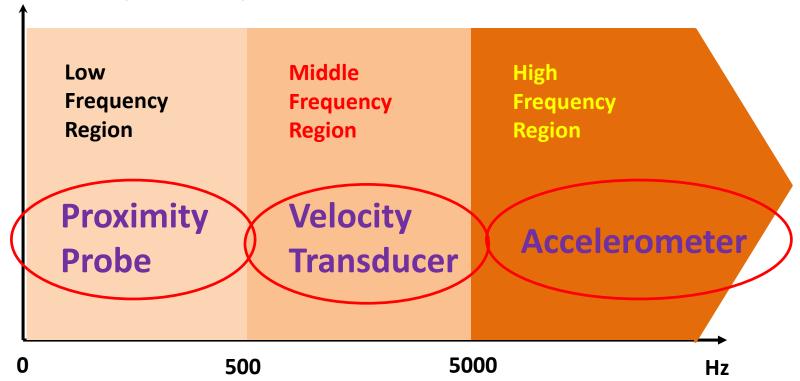
(Low / high temp?, Low/High speed?)

Mounting the sensor correctly


(Location? Position?)

- Selecting the correct Transducer

Based on the experts experience:



- Selecting the correct Transducer

It is recommended by the experts:

- Selecting the correct Transducer

However, using only Accelerometer will also capable to give all frequency range data, since :

Acceleration =
$$\frac{d}{dt}$$
 (Velocity) = $\frac{d^2}{dt^2}$ (Displacement)

- Selecting the correct Transducer

Commercial Accelerometer

(Bruel & Kjaer, Accelerometers & Conditioning, Product Catalogue, Bruel & Kjaer, 2009)

- Selecting the model that suits the environment

Necessary:

- 1. Survey the machine:
 - 1. Speed and Load
 - 2. Bearing type
 - 3. Number or rotor bar / blade / impeller
 - 4. Sheave sizes
 - 5. Number of teeth of gear / sprockets

- Selecting the model that suits the environment

Necessary:

- 2. Survey the Environment:
 - 1. Temperature
 - 2. Maximum acceleration level
 - 3. Moisture
 - 4. Noise level
 - 5. Space between machines
 - 6. Magnetic fields

- Selecting the model that suits the environment

Technology	Temperature range
Piezoelectric – general	-55 °C to 260 °C
Piezoelectric – high temperature	-55 °C to 650 °C
Cryogenic piezoelectric	-184 °C to 177 °C
IEPE general type	-55 °C to 125 °C
IEPE high temperature	-55 °C to 175 °C
Piezoresistive	-55 °C to 66 °C

Mounting the sensor correctly

"Correct installation of the sensor is paramount to achieve good results"

Safe Access! -> no risk entangled, burned leaning over moving or rotating parts

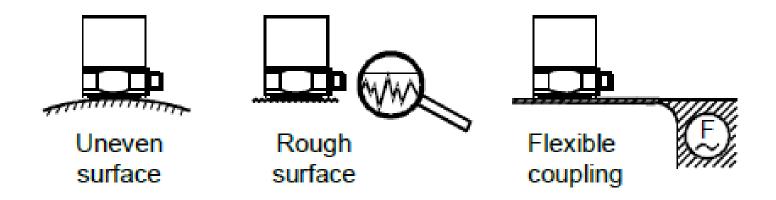
Good mechanical transmission path between the source and sensor

Mounting the sensor correctly

Mounting type:

- 1. Stud / Flange Type
- 2. Magnetic Type
- 3. Adhesive
- 4. Probe

Mounting the sensor correctly

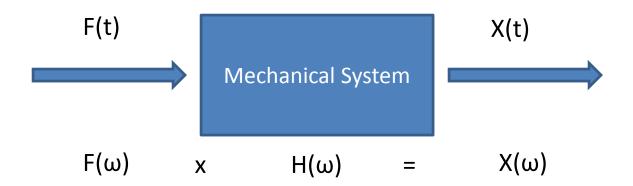


(Weber, M. *Piezoelectric Accelerometers, Theory and Application*, Metra Mess und Frequenztechnik in Radebeul e.K., 2012)

- Typical mounting errors

(Weber, M. *Piezoelectric Accelerometers, Theory and Application*, Metra Mess und Frequenztechnik in Radebeul e.K., 2012)

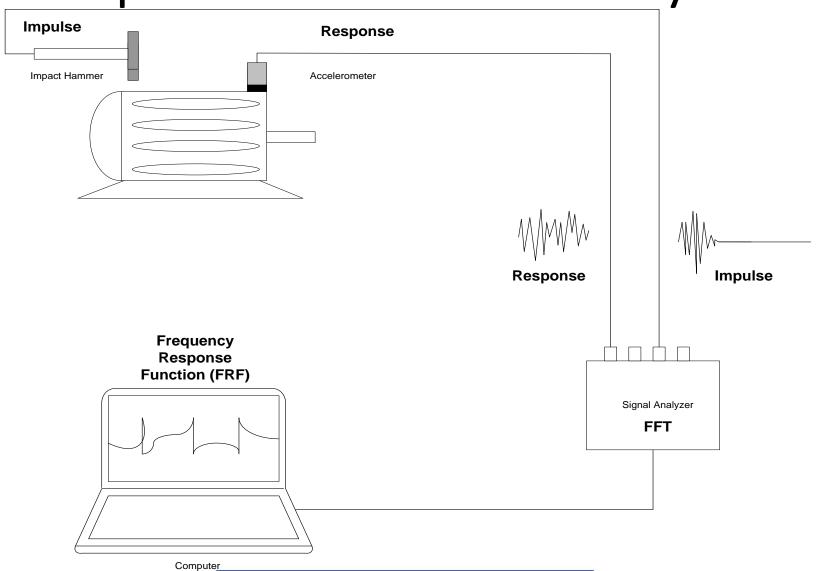
- Modal analysis means a study of the dynamic character of a system which is determined independently from the loads applied and the response of the system
- Modes (also known as resonances are inherent properties of a structure.
- Modes or resonances are determined by the properties of the material (i.e. mass, stiffness, and damping properties), and also boundary conditions of the system.


- Recently, impact testing (also known as bump testing) has been widely spread and become a fast and economical ways to find the modes of vibration of a machine.
- Impact testing involves :
 - Making FRF Measurement
 - Modal Ecitation Techniques
 - Modal Parameter Estimation

FRF Measurement

The FRF describes the input-output relation on a mechanical system (between two points) as a function of frequency, as shown as

- FRF is defined as the ratio between an output response $X(\omega)$ to the input force $F(\omega)$
- Other names of FRF:
 - Compliance = (displacement / force)
 - Mobility = (velocity / force)
 - Inertance / receptance = (acceleration / force)
 - Dynamic stiffness = (1/compliance)
 - Impedance = (1/mobility)
 - Dynamic mass = (1/inertance)



EXCITING MODE WITH IMPACT TESTING

- Impact Hammer to measure the input force using a load cell on its head.
- 2. Accelerometer to measure the responce acceleration at fixed point & direction
- 3. FFT Analyzer to compute FRFs
- 4. Post processing modal software for identifying modal parameters and displaying the mode shape in animation.

Post Processing Device

References

• Bruel & Kjaer, *Accelerometers & Conditioning,* Product Catalogue, Bruel & Kjaer, 2009

 Weber, M. Piezoelectric Accelerometers, Theory and Application, Metra Mess und Frequenztechnik in Radebeul e.K., 2012

Thank you

QnA

