
ADVANCED PROGRAMMING

(BETC 1353)

WEEK 7: FILE PROCESSING (PART 1)

AIMAN ZAKWAN BIN JIDIN
aimanzakwan@utem.edu.my

NORFADZLIA BINTI MOHD YUSOF
norfadzlia@utem.edu.my

Learning Outcomes:

At the end of this session, you should be able:
• To explain the data hierarchy, files and streams
• To create a sequential-access file

A File

• is collection of records
• Is stored in a folder physically
• A File extension is usually included to indicate

a kind of file
– .txt -> a text file
– .jpg -> an image file
– .cpp -> a CPP source code

File Classifications
• Files can be classified based on how to access

data in its memory as:
– Sequential file: All records are stored sequentially as

there are entered. It is suitable if all of the contents
are processed

– Random access file: A record can be accessed directly
by using its index. Indices for all records must be
maintained.

– Direct access file: A record can be accessed based on
its relative position to the first record. Each record
must be have same length.

File Classifications
• A File can be classified as a text file or a binary file
– A text file: Data are stored in ASCII character code. Its

contents can be viewed by using type command in
DOS mode (Command prompt)

– A binary file: Data are stored same as its format in
the computer memory spaces.

• Suppose, you will save data: 4567801.92. In a text
file, that data need 10 bytes (10 characters). In a
binary file, that data consume 4 bytes (float
type).

Data Hierarchy in A File
File

Record Record...

Field Field...

Byte Byte...

Bit 7 Bit 0...

Stream
• Stream is a general term to indicate data flow

from one place to another one.
• For example:
– cin is an object that handles data flow from a

standard input (i.e. keyboard) into a variabel
– cout is an object that handles data flow from any

expressions into standard output (i.e. consol)
• File processing also uses the stream mechanism

like on cin or cout. Therefore, operators such as
<< and >> that are used in cin or cout can be
used in file processing

Class Hierarchy for Stream Operations

ios

istream ostream

iostream

fstream istream_
withassign

ofstream ifstream

ostream_
withassign

fstream.h

iostream.h

Procedure in Accessing a File
Open the File

Process the Data

Close the File

•Writing
• Reading
• Updating

Ensure the File Can
be Opened

How to Store Data in a Sequential-
Access File (Part 1)

• First, create object by using ofstream class (its
prototype is in fstream.h). For example:

ofstream country_file;

Previously, you must include: #include
<fstream>

• To create and open the file, use the open()
member function of the object. For example:
country_file.open(’country.txt’);

How to Store Data in a Sequential-
Access File (Part 2)

• To ensure that file can be opened, check by calling the fail()
member function of the object. This function returns true if the file
can not be created/opened. For example:

if (country_file.fail())
{

cout << "File country.txt can't be created" << endl;
exit(1);

}

• The alternative way is using the is_open() member function. This
function returns true if the file can be opened. For example:
if (!country_file.is_open())
{

cout << "File country.txt can't be created" << endl;
exit(1);

}

How to Store Data in a Sequential-
Access File (Part 3)

• Suppose your object is country_file, the
following command will write data to the file:
country_file << setw(20) << "Austria"

<< setw(20) << "Vienna"
<< endl;

• To close the file, use the close() member
function of the object. For example:
country_file.close();

Try Yourself!
#include <iostream>
#include <fstream>
#include <cstdlib>
#include <iomanip>

using namespace std;

int main()
{

ofstream country_file; // object declaration

// Create and open country.txt file
country_file.open("country.txt");
if (country_file.fail())
{

cout << "File country.txt can't be created" << endl;
exit(1);

}

// Save data
country_file << setiosflags(ios::left);
country_file << setw(20) << "Austria"

<< setw(20) << "Vienna" << endl;
country_file << setw(20) << "Netherlands"

<< setw(20) << "Amsterdam" << endl;
country_file << setw(20) << "Indonesia"

<< setw(20) << "Jakarta" << endl;
country_file << resetiosflags(ios::left);

savecountry.cpp

Please continue
to the next

page.

Try Yourself!

// Close the file
country_file.close();

cout << "Data have been stored in the country.txt file "
<< endl;

cout << "Please check it in the same folder with this program"
<< endl;

}

savecountry.cpp

Yes, here is the
end of program.
Lets try now to

compile and run it.

How to Check The File

How To Create a Binary File

• Add the second argument of the open() with
ios::binary

• The ios::binary is called as a file mode flag, a
flag that determines the operation will be
done in the file.

• Write data using the write() member function

Try Yourself!

savebin.cpp

Please continue
to the next

page.

#include <iostream>
#include <fstream>
#include <cstdlib>

using namespace std;

int main()
{

ofstream output_file;

// Create and open the file
output_file.open("number.bin", ios::binary);
if (output_file.fail())
{

cout << "The number.bin file can't be created"
<< endl;

exit(1);
}

Try Yourself!

savebin.cpp
// Store the data
int data[] = {7, 456, 239, 10298, 56, -1, 99};
for (int i = 0; i < sizeof(data) / sizeof(int); i++)

output_file.write((char *) &data[i], sizeof(int));

// Close the file
output_file.close();

cout << "Data have been stored in the number.bin file"
<< endl;

cout << "Please check it in the same folder with this program"
<< endl;

} You can see the result by using
the type command. And, of

course, you can’t read a binary
file with your eyes!

Try Yourself!

savetext.cpp

Please continue
to the next

page.

#include <iostream>
#include <fstream>
#include <cstdlib>

using namespace std;

int main()
{

ofstream output_file;

// Create and open the file
output_file.open("number.txt");
if (output_file.fail())
{

cout << "The number.txt file can't be created"
<< endl;

exit(1);
}

Try Yourself!

savetext.cpp
// Store the data
int data[] = {7, 456, 239, 10298, 56, -1, 99};
for (int i = 0; i < sizeof(data) / sizeof(int); i++)

output_file << data[i] << endl;

// Close the file
output_file.close();

cout << "Data have been stored in the number.txt file"
<< endl;

cout << "Please check it in the same folder with this program"
<< endl;

}
Notice the result! Yes, you
can read the data if you

store the data in a text file!

How to Add Data to the Existing File

• Add the second argument of the open() with
ios::app

• For example:
country_file.open("country.txt", ios::app);

The existing data will not be
deleted. The new output will

be appended into the last
record.

Try Yourself!

addcountry.cpp

Please
continue to
next page.

#include <iostream>
#include <fstream>
#include <cstdlib>
#include <iomanip>

using namespace std;

int main()
{

ofstream country_file; // object declaration

// open country.txt file for adding data
country_file.open("country.txt", ios::app);
if (country_file.fail())
{

cout << "File country.txt can't be created"
<< endl;

exit(1);
}

Try Yourself!

addcountry.cpp
// Save data
country_file << setiosflags(ios::left);
country_file << setw(20) << "Thailand"

<< setw(20) << "Bangkok" << endl;
country_file << setw(20) << "Malaysia"

<< setw(20) << "Kuala Lumpur" << endl;
country_file << resetiosflags(ios::left);

// Close the file
country_file.close();

cout << "Data have been added into the country.txt file "
<< endl;

} You can see that Thailand and
Malaysia have been appended into

the country.txt file.

Useful File Flag Modes

• ios::app : Append mode. If file exists, the
contents are preserved. The new output will
be appended to the last records

• ios::binary: Binary mode
• ios::in: Read mode. File is intended for reading
• ios::out: Write mode. File is intended for

writing

Member Functions for Detecting
Errors

• good(): The function returns true if the last
operation on the file is successful

• eof(): The function returns true if the last
operation that read or read data make the file
pointer reaches the end of file. Useful for reading
data

• fail(): The function returns true if the last
operation on the file is not successful

• bad(): The function returns true if the last
operation is not valid

Self-Review Questions

1. Write the 4 fundamental steps in the file
processing in C++.

2. Write a C++ program which writes the text
“My favorite food is chicken
burger” to a text file named mytext.txt.

Self-Review Questions

Answers:
1. 4 fundamental steps in file processing:

Self-Review Questions
Answers:
2.
#include <iostream>
#include <fstream> //file processing functions
using namespace std;

int main(){
ofstream outfile;
outfile.open(“mytext.txt”); //open the file
if (outfile.fail()){ //ensure the file is successfully opened

cout << “File opening Error!\n”;
exit(1);

}
outfile << “My favorite food is chicken burger”; //write to file
outfile.close(); //close the file
return 0;

}

