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Lesson Outcome

Upon completion of this lesson, the student should
be able to:

1. ldentify the range that contains root(s).

2. Compute roots for nonlinear equations by using
Bisection method, Simple Fixed-Point iteration
and Newton-Raphson method.
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Solution of a Nonlinear Equation, f(x)=0
(Polynomial, trigonometric, exponential, logarithmic equations)
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: : Simple Newton-

Bisection : .
Method Fixed-Point Raphson
Iteration Method
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Intermediate Value Theorem
- Find the range that contains a root (answer)

Start the iteration with respective algorithm to get the
approximation solution
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2.1 Intermediate Value Theorem

Let f(x) = 0 be a non-linear equation. If f(x) is a continuous
function and f(a)f(b) < 0, then there exist at least a root in
the interval (a, b).

f (Aw)

When two points are
connected by a curve:
* One point below x-axis
* One point above x-axis
Then there will be at least
one root where the curve
crosses the x-axis.




2.1 Intermediate Value Theorem

Example 2.1:

Given f(x) = x? — 8x — 5, use intermediate value
theorem to find the interval that contains the negative root.

Solution:
f(0)=-5<0
f(=1)=4>0
~fO)f(-1) <0
Hence, the interval that contains the negative root is
(—1,0).

@080

ocw.utem.edu.m




2.1 Intermediate Value Theorem

Exercise 2.1:
1) Use intermediate value theorem to find the interval that

contains the root for f(x) = x3 + x + 3.

2) Use intermediate value theorem to find the interval that

contains the smallest positive root of x = 2 sin x.
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2.2 Bisection Method

The bisection method in
mathematics is a root-

finding method that /\
repeatedly bisects an | . X

L/
a/d c b

interval and then selects
a subinterval that
contains the root for
further processing.

From (a,b), ,C is the midpoint of aand b
we choose (a,c), ,d is the midpoint of aand ¢
then we choose (d,c)

and so on...

until the range is small enough.
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2.2.1 Bisection Method Algorithm

Write f(x) = 0,
Find the initial interval [a, b], x* € (a, b)

!

Compute ¢; = %bi and f(c;)

Seti=Ol,

Is |b; —ail < eor|f(c)| < e7??

Stop the  vyes

i, where ¢ is the specified tolerance
X =C(;
Follow one path onl No
If f(a)f(c;) <O If f(c;)f(b;) <0
If f(c;) =0 Seta;y, = q; Seta;,; = ¢;
and b1 = ¢; and b; 1 = b;

Repeat the iteration, i =i + 1
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Example 2.2:

Find the root of f(x) = x% — 3 by using bisection
method accurate to within € = 0.002 and taking
(1,2) as starting interval.

(Answer correct to 4 decimal places)
Take that |f (c;)| < & for your calculation.

(9 OS0




Solution:

bl | f(ai) | f(bi) ci fc_i) If(c_i)
| 1.0000 20000 -2.0000 1.0000 15000 -0.7500 0.7500
| 15000 20000 -0.7500 1.0000 17500 0.0625 0.0625
| 15000 17500 -0.7500 0.0625 16250 -0.3594 0.3594
< 16250 17500 -0.3594 0.0625 16875 -0.1523 0.1523
‘0 16875 17500 -0.1523 0.0625 17188 -0.0459 0.0459
3 17188 17500 -0.0459 0.0625 17344 00081 0.0081
5| 17188 17344 -00459 00081 17266 -0.0190 0.0190
4| 17266 17344 -00190 00081 17305 -0.0055 0.0055
S 17305 17344 -0.0055 0.0081 0.0013  0.0013

Root, x = 1.7324
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Example 2.3
Using the bisection method, find the root of
fx) =x6—-x—-1

accurate to within € = 0.001.
Given that x, = 1 and x;, = 2.
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Solution:

nox, x, x, fix,) fo) b,
(| 1.0000 | 2.0000 | 1.5000 1 8.8906 0.5000
J | 1.0000 | 1.5000 | 1.2500 1 1.5647 0.2500
5 | 1.0000 | 12500 | 1.1250 1 -0.0977 0.1250
4| 11250 | 12500 | 1.1875 -0.0977 0.6167 0.0625
5| 11250 | 1.1875 | 1.1562 -0.0977 0.2333 0.0312
9| 11250 | 1.1562 | 1.1406 -0.0977 0.0616 0.0156
/| 11250 | 1.1406 | 1.1328 -0.0977 -0.0196 0.0078
4| 11328 | 1.1406 | 1.1367 -0.0197 0.0206 0.0039
9 | 11328 | 1.1367 | 1.1348 -0.0197 0.0004 0.0020
0] 11328 | 1.1348¢( 1.1338 > -0.0197 -0.0096 0.0010
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The root is, x = 1.1338
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Exercise 2.2:

Find the root of f(x) = e*(3.2sinx — 0.5 cos x) on
the interval [3,4] by using bisection method

accurate to within € = 0.05.

(Answer correct to 4 decimal places)
Take that |f(c;)| < € for your calculation
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2.3 Simple Fixed-Point Iteration

Rearrange the function f(x) = 0 into x = g(x)

!

Write the iteration formula: x;.; = g(x;)
where |g'(xy)| < 1 forall x € [a, b]

1 Repeat the iteration,
i=1i+1
Compute x;.; = g(x;) Remarks:
The Fixed-point
1 iteration may
No converge to a root

Is |xjpq1 — x| < & ??

: e different from the
where ¢ is the specified tolerance

expected one, or
1 Yes it may diverge.
Different
rearrangement will
converge at different

rates.
ocw.utem.edu.m

Stop the iteration,
X = Xi+1
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Example 2.4:

Given f(x) = x? — 2x — 3. Find the root of the
function by using simple fixed-point method
accurate to within e = 0.001 and taking x = 4 as
starting point.

(Answer correct to 4 decimal places)
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Solution:
a) x=g(x)=+v2x+3
g'(x) = —— and |g'(4)] = 0.3 < 1

2x+3
This form will converge and give a solution

i X | Ix_{i+1}-x_l
) 4.0000

1 3.3166 0.6834

2 3.1037 0.2129

3 3.0344 0.0694

4 3.0114 0.0229

9 3.0038 0.0076

6 3.0013 0.0025

4 3.0004 0.0008

The value converging to root of x = 3. 004
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Solution:
b) x=g(x) ==
!/ 3 !/
g'(x) = ~ G2 and |g'(4)] =0.75 < 1

This form will converge and give a solution
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i | Ix_{i+1}-x_il

0 4.0000

1 1.5000 2 5000

2 -6.0000 7.5000

3 -0.3750 5.6250

4 1.2632 0.8882

5 -0.9194 0.3438

6 1.0276 0.1083 After 11

> 10.9909 00367 iterations, the

8 10031 00122 value converging
9 -0.9990 0.0041 torootof x = —1



Solution:

C) X = g(x) — -
g (x)=xand|g@)|=4>1
This form will diverge and give no solution

x2-3

Ix_{i+1}-x_il
0 4.0000
1 6.5000 2 5000
2 19.6250 13.1250 value diverges
x%-3 .

3 191.0703 171.4453 gx) = —— isnot
4 18252 4322 18061.3618 a suitable form for

simple fixed-point
S| 1665756383672 166557385 9350 . .

iteration
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Example 2.5:

Find the root by using simple fixed-point iteration

f(x) =3xe* -1

accurate to within € = 0.0001. Assume x, = 1.

(Answer correct to 4 decimal places)

(9 OS0




- e

Solution:

There are two possible forms of g(x):

x=g(x) = %e‘x and x=g(x)=1In (%)

g'(x)=—ze~ 9'(0) =~
g'(D]=0.12 < 1 1g'(0)]=1>1
Criteria is satisfied Criteria is not satisfied
- g() =z
S guxX) = 3 e
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Solution:

Thus, the root that satisfies the stopping criteriais x = 0.2576.
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U 1.0000

| 0.1226 0.8774
2 0.2949 0.1722
3 0.2482 0.0467
4 0.2601 0.0119
S 0.2570 0.0031
b 0.2578 0.0008
7. 0.2576 0.0002
J 0.2576 0.0000
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Exercise 2.3:

Locate the root of f(x) = e™ — x by using simple
fixed-point iteration accurate to within € = 0.003

where x € (0,1].

(Answer correct to 4 decimal places)
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2.4 Newton-Raphson Method

Write f(x) = 0,
Given x( reasonably close to the root

!

Compute f(xg) and f'(xg)
where f(xg) # 0and f'(xg) # 0

Seti =0 1 Repeat the iteration,
£ il

Compute xj;1 = X; o

!

Is |xipq — x| <eor|flxp)] <e??
where € is the specified tolerance

1 Yes

Stop the iteration,
X = Xit+1
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Example 2.6:

Determine the root of the function

FO) = o* —=

X
by using Newton-Raphson method with x, = 0.8

accurate to within € = 0.0001.

(Answer correct to 4 decimal places)
Take that |f (x;)| < & for your calculation
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. _ f(x;) w
Solution: Xi+1 = X

)
: _ 2 Check:
Given f(x) = e” — £(0.8) = —0.2745 # 0
hence, f'(x) = e* + % f'(0.8) =5.3505#0

P i) )P

LN 0.8000 -0.2745 5.3505 -0.0513 0.2745
8 08513 -0.0067 5.1024 -0.0013 0.0067
72 | 0.8526 -0.0000 5.0970 -0.0000 0.0000
| |
' I
Root, x = 0.8526 Reaching stopping

criteria
ocw.utem.edu.m
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Exercise 2.4:

Use the Newton-Raphson method to estimate the
root of

f(x) =3x +sinx —e”*
starting from xy = 0 accurate to within

;41 — x;| < 0.0001.

(Answer correct to 4 decimal places)
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