# BEKG 2452 NUMERICAL METHODS Solution of Nonlinear Equations 

Ser Lee Loh ${ }^{\text {a }}$, Wei Sen Loia ${ }^{\text {a }}$
${ }^{a}$ Fakulti Kejuruteraan Elektrik
Universiti Teknikal Malaysia Melaka

## Lesson Outcome

Upon completion of this lesson, the student should be able to:

1. Identify the range that contains root(s).
2. Compute roots for nonlinear equations by using Bisection method, Simple Fixed-Point iteration and Newton-Raphson method.
(Polynomial, trigonometric, exponential, logarithmic equations)


## Bisection

Method

## Simple <br> Fixed-Point Iteration



NewtonRaphson Method

## Intermediate Value Theorem

- Find the range that contains a root (answer)



### 2.1 Intermediate Value Theorem

Let $f(x)=0$ be a non-linear equation. If $f(x)$ is a continuous function and $\boldsymbol{f}(\boldsymbol{a}) \boldsymbol{f}(\boldsymbol{b})<\mathbf{0}$, then there exist at least a root in the interval $(a, b)$.


When two points are connected by a curve:

- One point below x-axis
- One point above $x$-axis Then there will be at least one root where the curve crosses the $x$-axis.


### 2.1 Intermediate Value Theorem

## Example 2.1:

Given $f(x)=x^{2}-8 x-5$, use intermediate value theorem to find the interval that contains the negative root.

Solution:

$$
\begin{gathered}
f(0)=-5<0 \\
f(-1)=4>0 \\
\therefore f(0) f(-1)<0
\end{gathered}
$$

Hence, the interval that contains the negative root is
$(-1,0)$.

### 2.1 Intermediate Value Theorem

## Exercise 2.1:

1) Use intermediate value theorem to find the interval that contains the root for $f(x)=x^{3}+x+3$.
2) Use intermediate value theorem to find the interval that contains the smallest positive root of $x=2 \sin x$.

### 2.2 Bisection Method

The bisection method in mathematics is a rootfinding method that repeatedly bisects an interval and then selects
a subinterval that contains the root for further processing.

From $(a, b), \quad c$ is the midpoint of $a$ and $b$ we choose $(a, c), d$ is the midpoint of $a$ and $c$ then we choose ( $\mathrm{d}, \mathrm{c}$ )
and so on...
until the range is small enough.

### 2.2.1 Bisection Method Algorithm

Write $f(x)=0$,
Find the initial interval $[a, b], x^{*} \in(a, b)$


Compute $c_{i}=\frac{a_{i}+b_{i}}{2}$ and $f\left(c_{i}\right)$
Set $i=0 \downarrow$

Stop the Yes | Is $\left\|b_{i}-a_{i}\right\|<\varepsilon$ or $\left\|f\left(c_{i}\right)\right\|<\varepsilon$ ?? |
| :--- |
| iteration, |
| $x=c_{i}$ |$\quad \square$ where $\varepsilon$ is the specified tolerance

$$
\text { If } f\left(c_{i}\right) f\left(b_{i}\right)<0
$$

If $f\left(c_{i}\right)=0$

$$
\begin{aligned}
& \text { If } f\left(a_{i}\right) f\left(c_{i}\right)<0 \\
& \text { Set } a_{i+1}=a_{i} \\
& \text { and } b_{i+1}=c_{i}
\end{aligned}
$$

$$
\text { Set } a_{i+1}=c_{i}
$$

$$
\text { and } b_{i+1}=b_{i}
$$

## Example 2.2:

Find the root of $f(x)=x^{2}-3$ by using bisection method accurate to within $\varepsilon=0.002$ and taking $(1,2)$ as starting interval.
(Answer correct to 4 decimal places) Take that $\left|f\left(c_{i}\right)\right|<\varepsilon$ for your calculation.

## Solution:

| n | a_i | b_i | f(a_i) | f(b_i) | c_i | f(c_i) | If(c_j)1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1.0000 | 2.0000 | -2.0000 | 1.0000 | 1.5000 | -0.7500 | 0.7500 |
| 1 | 1.5000 | 2.0000 | -0.7500 | 1.0000 | 1.7500 | 0.0625 | 0.0625 |
| 2 | 1.5000 | 1.7500 | -0.7500 | 0.0625 | 1.6250 | -0.3594 | 0.3594 |
| 3 | 1.6250 | 1.7500 | -0.3594 | 0.0625 | 1.6875 | -0.1523 | 0.1523 |
| 4 | 1.6875 | 1.7500 | -0.1523 | 0.0625 | 1.7188 | -0.0459 | 0.0459 |
| 5 | 1.7188 | 1.7500 | -0.0459 | 0.0625 | 1.7344 | 0.0081 | 0.0081 |
| 6 | 1.7188 | 1.7344 | -0.0459 | 0.0081 | 1.7266 | -0.0190 | 0.0190 |
| 7 | 1.7266 | 1.7344 | -0.0190 | 0.0081 | 1.7305 | -0.0055 | 0.0055 |
| 8 | 1.7305 | 1.7344 | -0.0055 | 0.0081 | 1.7324 | 0.0013 | 0.0013 |

Root, $x=1.7324$

## Example 2.3

Using the bisection method, find the root of

$$
f(x)=x^{6}-x-1
$$

accurate to within $\varepsilon=0.001$.
Given that $x_{a}=1$ and $x_{b}=2$.

## Solution:

| $n$ | $x_{a}$ | $x_{b}$ | $x_{m}$ | $f\left(x_{a}\right)$ | $f\left(x_{m}\right)$ | $\left\|x_{b}-x_{m}\right\|$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1.0000 | 2.0000 | 1.5000 | -1 | 8.8906 | 0.5000 |
| 2 | 1.0000 | 1.5000 | 1.2500 | -1 | 1.5647 | 0.2500 |
| 3 | 1.0000 | 1.2500 | 1.1250 | -1 | -0.0977 | 0.1250 |
| 4 | 1.1250 | 1.2500 | 1.1875 | -0.0977 | 0.6167 | 0.0625 |
| 5 | 1.1250 | 1.1875 | 1.1562 | -0.0977 | 0.2333 | 0.0312 |
| 6 | 1.1250 | 1.1562 | 1.1406 | -0.0977 | 0.0616 | 0.0156 |
| 7 | 1.1250 | 1.1406 | 1.1328 | -0.0977 | -0.0196 | 0.0078 |
| 8 | 1.1328 | 1.1406 | 1.1367 | -0.0197 | 0.0206 | 0.0039 |
| 9 | 1.1328 | 1.1367 | 1.1348 | -0.0197 | 0.0004 | 0.0020 |
| 10 | 1.1328 | 1.1348 | $\mathbf{1 . 1 3 3 8}$ | -0.0197 | -0.0096 | 0.0010 |

The root is, $x=1.1338$

## Exercise 2.2:

Find the root of $f(x)=e^{x}(3.2 \sin x-0.5 \cos x)$ on the interval $[3,4]$ by using bisection method accurate to within $\varepsilon=0.05$.
(Answer correct to 4 decimal places)
Take that $\left|f\left(c_{i}\right)\right|<\varepsilon$ for your calculation

### 2.3 Simple Fixed-Point Iteration

Rearrange the function $f(x)=0$ into $x=g(x)$


Write the iteration formula: $x_{i+1}=g\left(x_{i}\right)$ where $\left|g^{\prime}\left(x_{0}\right)\right|<1$ for all $x \in[a, b]$

Repeat the iteration,


$$
\text { Is }\left|x_{i+1}-x_{i}\right|<\varepsilon ? ?
$$

where $\varepsilon$ is the specified tolerance
Yes
Stop the iteration,

$$
x=x_{i+1}
$$

Remarks: The Fixed-point iteration may converge to a root different from the expected one, or it may diverge. Different rearrangement will converge at different rates.

## Example 2.4:

Given $f(x)=x^{2}-2 x-3$. Find the root of the function by using simple fixed-point method accurate to within $\varepsilon=0.001$ and taking $x=4$ as starting point.
(Answer correct to 4 decimal places)

## Solution:

a) $x=g(x)=\sqrt{2 x+3}$

$$
g^{\prime}(x)=\frac{1}{\sqrt{2 x+3}} \text { and }\left|g^{\prime}(4)\right|=0.3<\mathbf{1}
$$

This form will converge and give a solution

| $\mathbf{i}$ | $\mathbf{x} \mathbf{i}$ | lx_\{i+1\}-x_il |
| :---: | :---: | :---: |
| $\mathbf{0}$ | 4.0000 |  |
| $\mathbf{1}$ | 3.3166 | 0.6834 |
| $\mathbf{2}$ | 3.1037 | 0.2129 |
| $\mathbf{3}$ | 3.0344 | 0.0694 |
| 4 | 3.0114 | 0.0229 |
| $\mathbf{5}$ | 3.0038 | 0.0076 |
| 6 | 3.0013 | 0.0025 |
| $\mathbf{7}$ | 3.0004 | 0.0008 |

The value converging to root of $x=3.004$

Solution:
b) $x=g(x)=\frac{3}{x-2}$

$$
g^{\prime}(x)=-\frac{3}{(x-2)^{2}} \text { and }\left|g^{\prime}(4)\right|=0.75<1
$$

This form will converge and give a solution

| $\mathbf{i}$ | $\mathbf{x} \mathbf{i}$ | lx_\{i+1\}-x_il |
| :---: | :---: | :---: |
| $\mathbf{0}$ | 4.0000 |  |
| $\mathbf{1}$ | 1.5000 | 2.5000 |
| $\mathbf{2}$ | -6.0000 | 7.5000 |
| $\mathbf{3}$ | -0.3750 | 5.6250 |
| $\mathbf{4}$ | -1.2632 | 0.8882 |
| $\mathbf{5}$ | -0.9194 | 0.3438 |
| $\mathbf{7}$ | -1.0276 | 0.1083 |
| $\mathbf{8}$ | -0.9909 | 0.0367 |
| $\mathbf{9}$ | -1.0031 | 0.0122 |

After 11 iterations, the value converging to root of $x=-1$

## Solution:

c) $x=g(x)=\frac{x^{2}-3}{2}$

$$
g^{\prime}(x)=x \text { and }\left|g^{\prime}(4)\right|=4>1
$$

This form will diverge and give no solution

| $\mathbf{i}$ | $\mathbf{x} \mathbf{i}$ | $\mathbf{l} \mathbf{x}_{\mathbf{-}}\{\mathbf{i}+\mathbf{1}\}-\mathbf{x}_{\mathbf{i}} \mathbf{i l}$ |
| :---: | :---: | :---: |
| $\mathbf{0}$ | 4.0000 |  |
| $\mathbf{1}$ | 6.5000 | 2.5000 |
| $\mathbf{2}$ | 19.6250 | 13.1250 |
| $\mathbf{3}$ | 191.0703 | 171.4453 |
| $\mathbf{4}$ | 18252.4322 | 18061.3618 |
| $\mathbf{5}$ | 166575638.3672 | 166557385.9350 |

## value diverges

$g(x)=\frac{x^{2}-3}{2}$ is not a suitable form for simple fixed-point iteration

## Example 2.5:

Find the root by using simple fixed-point iteration

$$
f(x)=3 x e^{x}-1
$$

accurate to within $\varepsilon=0.0001$. Assume $x_{0}=1$.
(Answer correct to 4 decimal places)

## Solution:

There are two possible forms of $g(x)$ :

$$
\begin{array}{rrr}
x=g(x)=\frac{1}{3} e^{-x} & \text { and } & x=g(x)=\ln \left(\frac{1}{3 x}\right) \\
g^{\prime}(x)=-\frac{1}{3} e^{-x} & g^{\prime}(x)=-\frac{1}{x} \\
\left|g^{\prime}(1)\right|=\mathbf{0 . 1 2}<\mathbf{1} & \left|g^{\prime}(0)\right|=\mathbf{1} \geq \mathbf{1}
\end{array}
$$

Criteria is satisfied
Criteria is not satisfied

$$
\therefore g(x)=\frac{1}{3} e^{-x}
$$

## Solution:

| $\boldsymbol{i}$ | $x_{i}$ | $\left\|x_{i}-x_{i+1}\right\|$ |
| :---: | :---: | :---: |
| 0 | 1.0000 |  |
| 1 | 0.1226 | 0.8774 |
| 2 | 0.2949 | 0.1722 |
| 3 | 0.2482 | 0.0467 |
| 4 | 0.2601 | 0.0119 |
| 5 | 0.2570 | 0.0031 |
| 6 | 0.2578 | 0.0008 |
| 7 | 0.2576 | 0.0002 |
| 8 | $\mathbf{0 . 2 5 7 6}$ | 0.0000 |

Thus, the root that satisfies the stopping criteria is $x=0.2576$.

## Exercise 2.3:

Locate the root of $f(x)=e^{-x}-x$ by using simple fixed-point iteration accurate to within $\varepsilon=0.003$ where $x \in(0,1]$.
(Answer correct to 4 decimal places)

### 2.4 Newton-Raphson Method

Write $f(x)=0$,
Given $x_{0}$ reasonably close to the root


Compute $f\left(x_{0}\right)$ and $f^{\prime}\left(x_{0}\right)$ where $f\left(x_{0}\right) \neq 0$ and $f^{\prime}\left(x_{0}\right) \neq 0$

$$
\text { Set } i=0
$$

Compute $x_{i+1}=x_{i}-\frac{f\left(x_{i}\right)}{f^{\prime}\left(x_{i}\right)}$


Repeat the iteration, $i=i+1$

Is $\left|x_{i+1}-x_{i}\right|<\varepsilon$ or $\left|f\left(x_{i+1}\right)\right|<\varepsilon$ ?? where $\varepsilon$ is the specified tolerance

Yes
Stop the iteration,

$$
x=x_{i+1}
$$

## Example 2.6:

Determine the root of the function

$$
f(x)=e^{x}-\frac{2}{x}
$$

by using Newton-Raphson method with $x_{0}=0.8$ accurate to within $\varepsilon=0.0001$.
(Answer correct to 4 decimal places)
Take that $\left|f\left(x_{i}\right)\right|<\varepsilon$ for your calculation

Solution: $\quad x_{i+1}=x_{i}-\frac{f\left(x_{i}\right)}{f^{\prime}\left(x_{i}\right)}$
Given $f(x)=e^{x}-\frac{2}{x}$
Check:
hence, $f^{\prime}(x)=e^{x}+\frac{2}{x^{2}}$

$$
\begin{aligned}
& f(0.8)=-0.2745 \neq 0 \\
& f^{\prime}(0.8)=5.3505 \neq 0
\end{aligned}
$$

| i | x_i | f ( X _ i ) | $\mathrm{f}^{\prime}(\mathrm{x}$ - i$)$ | $\mathrm{f}(\mathrm{x}$ - i$) \mathrm{f}^{\prime}(\mathrm{x}$ - i$)$ | \|f(x_i)| |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0.8000 | -0.2745 | 5.3505 | -0.0513 | 0.2745 |
| 1 | 0.8513 | -0.0067 | 5.1024 | -0.0013 | 0.0067 |
| 2 | 0.8526 | -0.0000 | 5.0970 | -0.0000 | 0.0000 |
|  | $\downarrow$ |  |  |  | $\downarrow$ |

Root, $x=0.8526$
Reaching stopping criteria

## Exercise 2.4:

Use the Newton-Raphson method to estimate the root of

$$
f(x)=3 x+\sin x-e^{x}
$$

starting from $x_{0}=0$ accurate to within
$\left|x_{i+1}-x_{i}\right| \leq 0.0001$.
(Answer correct to 4 decimal places)

