BEKG 2452 NUMERICAL METHODS Errors

Ser Lee Loh ${ }^{\text {a }}$, Irma Wani binti Jamaludin ${ }^{\text {a }}$

Fakulti Kejuruteraan Elektrik
Universiti Teknikal Malaysia Melaka

Lesson Outcome

Upon completion of this lesson, the student should be able to:

1. Measure accuracy of approximations.
2. Compute the size of vectors and matrices.

1.1 Introduction to Numerical Methods

What Are Numerical Methods?

Methods of approximation

1.1 Introduction to Numerical Methods

Two main factors to be considered when applying numerical methods:

- How to obtain the approximations?
- How accurate are the approximations?

Error is the difference between the true value and the approximate value.

1.2 Floating Point Number System

- Fractional quantities are typically represented in computers using floating-point form.
- The decimal floating-point representation of a number x is given as

$$
x= \pm m \times 10^{n}
$$

where
m is the mantissa, $0.1 \leq m<1$
n is an integer

1.2 Floating Point Number System

A computer with a four decimal digit floating point arithmetic means that the number of digits is limited to four after decimal point. Hence, all the numbers are presented in the form

$$
(\pm 0 . x \times \times x) 10^{n}
$$

Example:

1. $2=(+0.2000) 10^{1}$
2. $-0.004=(-0.4000) 10^{-2}$
3. $-\frac{2}{3}=(-0.6667) 10^{0}$

1.3 Measuring Errors

Error $=\mid$ true value - approximate value \mid

$$
=\left|X_{T}-X_{A}\right|
$$

Relative error $=\left|\frac{\text { error }}{\text { true value }}\right|=\left|\frac{X_{T}-X_{A}}{X_{T}}\right|$

True percent relative error $=\left|\frac{\text { true value }- \text { approximate value }}{\text { true value }}\right| \times 100 \%$

Approximate percent relative error
$=\left|\frac{\text { present approximation }- \text { previous approximation }}{\text { present approximation }}\right| \times 100 \%$

1.3 Measuring Errors

Example 1.1:

The number 3.14159 is approximated as 3.1416 . Find the:
(a) Error
(b) Relative error
(c) True percent relative error

Solution:
(a) Error $=\left|X_{T}-X_{A}\right|=3.14159-3.14=0.00159$
(b) Relative error $=\left|\frac{X_{T}-X_{A}}{X_{T}}\right|=\left|\frac{0.00159}{3.14159}\right|=0.000506$
(c) True percent relative error

$$
=\left|\frac{X_{T}-X_{A}}{X_{T}}\right| \times 100=\left|\frac{0.00159}{3.14159}\right| \times 100=0.0506 \%
$$

1.4 Norms

- A norm is a real-valued function that provides a strictly positive size or 'length' of vectors and matrices.

1.4.1 L_{1} norm

Definition:

- The L_{1} norm on \mathbb{R}^{n} is given by

$$
\|\mathbf{x}\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|
$$

where $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$

1.4.1 L_{1} norm

Example 1.2:

Let $\mathbf{x}=(-1,2,-3)^{\mathrm{T}}$. Find the L_{1} norm of \mathbf{x}.

Solution:

$$
\|\mathbf{x}\|_{1}=\sum_{i=1}^{3}\left|x_{i}\right|=|-1|+|2|+|-3|=6
$$

1.4.1 L_{1} norm

Example 1.3:

Let $\mathbf{x}=(-1,2,-3,4)^{\mathrm{T}}$. Find the L_{1} norm of \mathbf{x}.

Solution:

$$
\|\mathbf{x}\|_{1}=\sum_{i=1}^{4}\left|x_{i}\right|=|-1|+|2|+|-3|+4=10
$$

1.4.2 L_{2} norm (Euclidean norm)

Definition:

- The L_{2} norm on \mathbb{R}^{n} is given by

$$
\|\mathbf{x}\|_{2}=\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{1 / 2}
$$

where $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$

1.4.2 L_{2} norm (Euclidean norm)

Example 1.4:

Let $\mathbf{x}=(-1,2,-3)^{\mathrm{T}}$. Find the L_{2} norm of \mathbf{x}.

Solution:

$$
\|\mathbf{x}\|_{2}=\left(\sum_{i=1}^{3} x_{i}^{2}\right)^{1 / 2}=(1+4+9)^{1 / 2}=\sqrt{14}
$$

1.4.2 L_{2} norm (Euclidean norm)

Example 1.5:

Let $\mathbf{x}=(-1,2,-3,4)^{\mathrm{T}}$. Find the L_{2} norm of \mathbf{x}.

Solution:

$$
\begin{aligned}
\|\mathbf{x}\|_{2}=\left(\sum_{i=1}^{4} x_{i}^{2}\right)^{1 / 2} & =(1+4+9+16)^{1 / 2} \\
& =\sqrt{30}
\end{aligned}
$$

1.4.3 L_{p} norm (Holder $\boldsymbol{L}_{\boldsymbol{p}}$ norm or p-norm)

Definition:

- The L_{p} norm on \mathbb{R}^{n} is given by

$$
\|\mathbf{x}\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}
$$

where $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$

1.4.3 $\boldsymbol{L}_{\boldsymbol{p}}$ norm (Holder $\boldsymbol{L}_{\boldsymbol{p}}$ norm or p-norm)

Example 1.6:

Let $\mathbf{x}=(-1,2,-3)^{\mathrm{T}}$ and $p=3$. Find the L_{p} norm of \mathbf{x}.

Solution:

$$
\|\mathbf{x}\|_{3}=\left(\sum_{i=1}^{3}\left|x_{i}\right|^{3}\right)^{1 / 3}=(1+8+27)^{1 / 3}=\sqrt[3]{36}
$$

1.4.3 L_{p} norm (Holder L_{p} norm or p-norm)

Example 1.7:
Let $\mathbf{x}=(-1,2,-3,4)^{\mathrm{T}}$ and $p=4$. Find the L_{p} norm of \mathbf{x}.

Solution:

$$
\begin{aligned}
\|\mathbf{x}\|_{4}=\left(\sum_{i=1}^{4}\left|x_{i}\right|^{4}\right)^{1 / 4} & =(1+16+81+256)^{1 / 4} \\
& =\sqrt[4]{354}
\end{aligned}
$$

1.4.4 1-norm matrix

Definition:

Let $A \in \mathbb{R}^{n \times m}$ be an $n \times m$ matrix and let i, j
entry of a matrix $A \in \mathbb{R}^{n \times m}$ be denoted by $a_{i j}$. Then the 1-norm of a matrix is the maximum of the column sums of the absolute
values of the entries of the matrix.

$$
\|A\|_{1}=\max _{j} \sum_{i=1}^{n}\left|a_{i j}\right|
$$

1.4.4 1-norm matrix

Example 1.8:

Find the 1-norm of A given:

Solution:

$$
A=\left[\begin{array}{ccc}
1 & -2 \\
-6 \\
7 & {\left[\begin{array}{c}
5 \\
-8
\end{array}\right.} & \left.\begin{array}{c}
3 \\
4 \\
-9
\end{array}\right]
\end{array}\right.
$$

$$
\begin{aligned}
\|A\|_{1} & =\max \{1+6+7,2+5+8,3+4+9\} \\
& =\max \{14,15,16\} \\
& =16
\end{aligned}
$$

1.4.4 1-norm matrix

Example 1.9:

Find the 1-norm of $A=\left[\begin{array}{cc}2 \\ -5\end{array}\right)\binom{-1}{4}$
Solution:

$$
\begin{aligned}
\|A\|_{1} & =\max \{2+5,1+4,1+1\} \\
& =\max \{7,5,2\} \\
& =7
\end{aligned}
$$

1.4.5 ∞-norm matrix

Definition:

Let $A \in \mathbb{R}^{n \times m}$ be a $n \times m$ matrix and let the i, j entry of a matrix $A \in \mathbb{R}^{n \times m}$ be denoted
$a_{i j}$. Then the ∞-norm of a matrix is the maximum of the row sums of the absolute
values of the entries of the matrix.

$$
\|A\|_{\infty}=\max _{i} \sum_{j=1}^{m}\left|a_{i j}\right|
$$

1.4.5 ∞-norm matrix

Example 1.10:

Find the ∞-norm of A given

$$
A=\left[\begin{array}{ccc}
\hline 1 & -2 & 3 \\
\hline-6 & 5 & 4 \\
\hline 7 & -8 & -9
\end{array}\right]
$$

Solution:

$$
\begin{aligned}
\|A\|_{\infty} & =\max \{1+2+3,6+5+4,7+8+9\} \\
& =\max \{6,15,24\}=24
\end{aligned}
$$

1.4.5 ∞-norm matrix

Example 1.11:

Find the ∞-norm of $A=$| 2 | -1 | 1 |
| :---: | :---: | :---: |
| -5 | 4 | 1 | .

Solution:

$$
\begin{aligned}
\|A\|_{\infty} & =\max \{2+\mathbb{1}+\mathbb{1}, \mathbf{5}+\mathbf{4}+\mathbf{1}\} \\
& =\max \{4,10\} \\
& =10
\end{aligned}
$$

