

OPENCOURSEWARE

ENGINEERING DYNAMICS

CURVILINEAR MOTION

The Objectives:

At the end of the course students will be able to describe the motion of a particle traveling along a curved path, relate kinematic quantities in terms of the rectangular components of the vectors and analyze the free-flight motion of a projectile.

General Curvilinear Motion

A particle moving along a curved path.

3d motion that can be described as a vector.

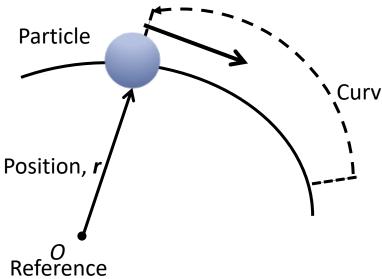


Figure 5 : The position of particle at curvilinear path

A particle moves along a curvilinear path is defined by the function, s. (Figure 5)

Curvilinear Path, s

The position of the particle at any instant is defined by the vector $\mathbf{r} = \mathbf{r}(t)$. The magnitude and direction of position, \mathbf{r} can be vary with time.

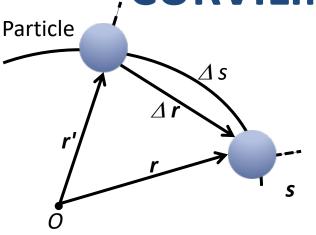


Figure 6 : The displacement of particle at curvilinear path

As shown in Figure 6, the particle moves a along the curve path with distance Δs during time interval Δt .

The **displacement** is determined by the difference between current and past vector.

$$\Delta r = r' - r$$

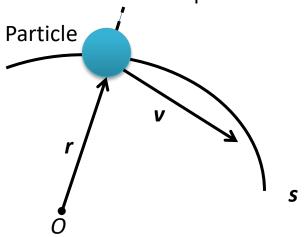


Figure 7 : The velocity of particle at curvilinear path

- ☐ The **velocity** of particle at curvilinear path shown in Figure 7 represents the rate of change in the position of a particle.
- \Box The magnitude of v is called the speed.
- \Box The velocity vector, \mathbf{v} , is always tangent to the path of motion.

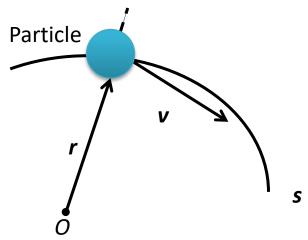


Figure 7 : The velocity of particle at curvilinear path

The average velocity of the particle during the time interval Δt is along path s is defined as

$$v_{ava} = \Delta r / \Delta t$$

The instantaneous velocity v is the timederivative of position r when the time interval Δt is taken as close as possible to zero second.

$$v = dr/dt$$

The magnitude may vary with time.

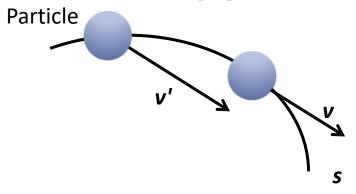


Figure 8 : The acceleration of particle at curvilinear path

- \square As shown in Figure 8, the particle's velocity changes from \mathbf{v} to $\mathbf{v'}$ over a time interval Δt .
- ☐ An Acceleration represents the rate of change in the velocity of a particle.

The average acceleration can be defined as the rate of change in the velocity of particle in time interval Δt .

The instantaneous acceleration of the particle moving at curvilinear path is the time derivative of the particle velocity when
$$\Delta t$$
 is taken as close as possible to zero second.

$$a_{avg} = \Delta v/\Delta t = (v - v')/\Delta t$$

$$a = dv/dt = d^2r/dt^2$$

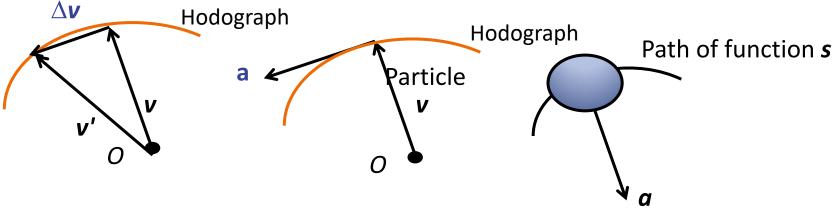


Figure 9: Hodograph

Hodograph

- As shown in Figure 9, a plot of the locus of points defined by the arrowhead of the velocity vector.
- The acceleration vector is always tangent to the hodograph, but generally **not tangent** to the path of function **s**.

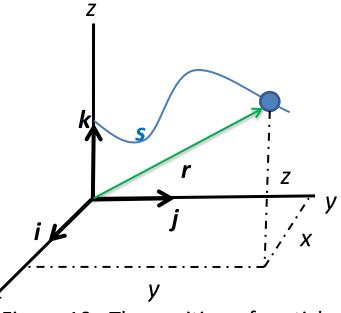


Figure 10: The position of particle in rectangular components

Position vector.

• r = x i + y j + z k

Functions of time.

- x = x(t),
- y = y(t) and
- z = z(t).

Usually, it is common to describe the motion of a particle by using x, y, z or rectangular components relative to a fixed frame of reference.

The **position** (Figure 10) of the particle can be defined at any instant by using the **position vector**.

It is also can be represent by functions of time.

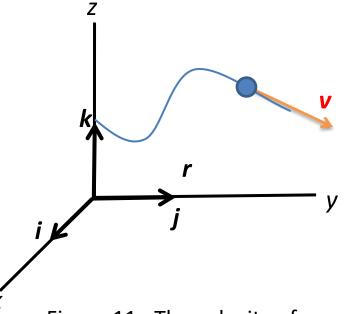


Figure 11: The velocity of particle in rectangular components

Velocity

 The velocity is the time derivative of the position vector. (Figure 11)

$$v = dr/dt = d(xi)/dt + d(yj)/dt + d(zk)/dt$$

Or
 $v = v_x i + v_y j + v_z k$

- Where, $v_x = \overset{\bullet}{x} = dx/dt$; $v_y = \overset{\bullet}{y} = dy/dt$; $v_z = \overset{\bullet}{z} = dz/dt$
- with the magnitude

$$v = [(v_x)^2 + (v_y)^2 + (v_z)^2]^{0.5}$$

 and the direction of v is tangent to the path of motion.

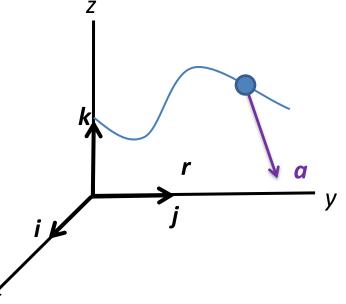


Figure 12: The acceleration of particle in rectangular components

Acceleration

 The acceleration is the time derivative of the velocity vector.

$$\mathbf{a} = d\mathbf{v}/dt = d^2\mathbf{r}/dt^2 = a_x \mathbf{i} + a_y \mathbf{j} + a_z \mathbf{k}$$

• Where,

$$a_x = v_x = dx/dt$$
; $a_y = v_y = dy/dt$;

$$a_z = v_z = \frac{\bullet}{dz}/dt$$

• with the magnitude

$$a = [(a_x)^2 + (a_y)^2 + (a_z)^2]^{0.5}$$

 and the direction of a is not tangent to the path of motion.

Problem

• The box slides down the slope described by the equation $y = (0.02x^2)$ m, where x is in meters. Given that the $v_x = -3$ m/s, $a_x = -1.5$ m/s² at x = 5 m. Determine the y components of the velocity and the acceleration of the box at x = 5 m.

Strategy

- Take the 1st time derivative of the path's equation to get the particle's velocity.
- And take the second time derivative of the path's equation to determine the acceleration.

Determine the y-component of velocity by taking a time derivative of the position $y = (0.02x^2)$

• derivative of the velocity to determine the acceleration.

$$\dot{y} = 2 (0.02) \times \dot{x} = 0.04 \times \dot{x}$$

Determine the acceleration component by taking a time derivative of the velocity \dot{y} .

$$\Rightarrow \ddot{y} = 0.04 \dot{x} \dot{x} + 0.04 \ddot{x} x$$

Substituting the x-component of the acceleration, velocity at x=5 into \dot{y} and \ddot{y} .

Since $\dot{x} = v_x = -3$ m/s, $\ddot{x} = a_x = -1.5$ m/s² at x = 5 m

$$\Rightarrow$$
 $\dot{y} = 0.04 \times \dot{x} = 0.04 (5) (-3) = -0.6 \text{ m/s}$

$$\Rightarrow \ddot{y} = 0.04 \dot{x} \dot{x} + 0.04 x \ddot{x}
= 0.04 (-3)^2 + 0.04 (5) (-1.5)
= 0.36 - 0.3
= 0.06 m/s^2$$

At x = 5 m

$$v_y = -0.6 \text{ m/s} = 0.6 \text{ m/s} \downarrow$$

 $a_y = 0.06 \text{ m/s}^2 \uparrow$

MOTION OF A PROJECTILE

A good free kicker instinctively knows at what angle, θ , and initial velocity, he must kick the ball to make a goal. The motion itself call as projectile motion. We going to analyze the motion in order to understand it.

MOTION OF A PROJECTILE

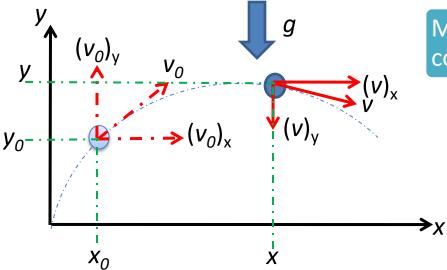


Figure 13: The projectile motion

Motion of projectile is shown in Figure 13. It's consist of two rectilinear motions.

Horizontal direction (zero acceleration)

Vertical direction

(constant acceleration i.e gravity)

Analysis of the motion (Figure 14)

- Let the particle move with initial velocity v_0 at position (x_0, y_0).
- After t second, the particle arrived at new position (x,y) with velocity v.

MOTION OF A PROJECTILE

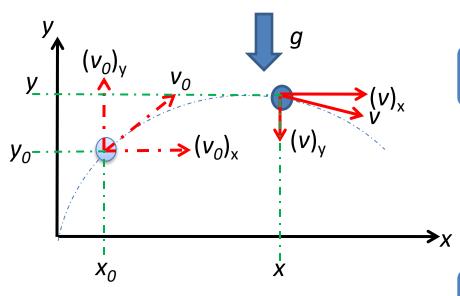


Figure 13: The projectile motion

Assumption

- No air resistance.
- Positive direction for *y*-axis(+ve).
- Positive direction for x-axis(\longrightarrow +ve).

Horizontal direction

• Since $a_x = 0$,

$$v_x = v_{ox}$$

• And the position in the x direction is :

$$x = x_o + (v_{ox}) t$$

Vertical direction

- Since $a_v = -g$,
- Constant acceleration equation can be applied.

$$v_y = v_{oy} - g t$$

$$y = y_o + (v_{oy}) t - \frac{1}{2} g t^2$$

$$v_y^2 = v_{oy}^2 - 2 g (y - y_o)$$

Problem

• The kid kick the ball with initial velocity $v_A = 10$ m/s at angle $\theta = 30$ ° as shown in the figure below. Determine the velocity v_C and horizontal distance x_c when the ball arrived at point C.

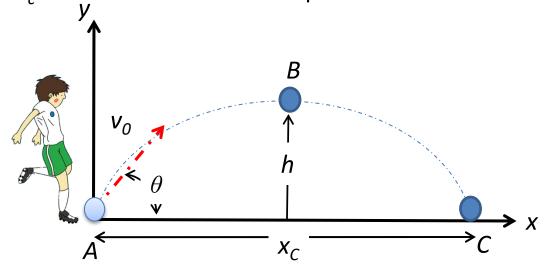


Figure 14: The free kick

Strategy

• Solved using the kinematic equation for projectile motion.

EXAMPLE 3: SOLUTION

Using $v_{Ax} = 10 \cos 30$ and $v_{Ay} = 10 \sin 30$

• We can write

$$v_x = 10 \cos 30$$

 $v_y = 10 \sin 30 - (9.81) t$
 $x = (10 \cos 30) t$
 $y = (10 \sin 30) t - \frac{1}{2} (9.81) t^2$

Since y = 0 at C

$$0 = (10 \sin 30) t - \frac{1}{2} (9.81) t^2 \implies t = 0, 1.019 s$$

EXAMPLE 3: SOLUTION

Velocity components at C are;

$$v_{Cx} = 10 \cos 30$$

= 8.66 m/s \rightarrow
 $v_{Cy} = 10 \sin 30 - (9.81) (1.019)$
= -5 m/s = 5 m/s \downarrow
...
• $v_{C} = \sqrt{8.66^2 + (-5)^2} = 10$ m/s

Horizontal distance the ball travels is;

$$x_c = (10 \cos 30) t$$

 $x_c = (10 \cos 30) 1.019 = 8.83 m$