

INTRODUCTION TO MECHANICAL ENGINEERING BMCG 2423

STATICS: EQUILIBRIUM OF PARTICLE

Dr. Rafidah Hasan¹, Dr. Mohd Juzaila Abd Latif²

¹rafidahhasan@utem.edu.my, ²juzaila@utem.edu.my

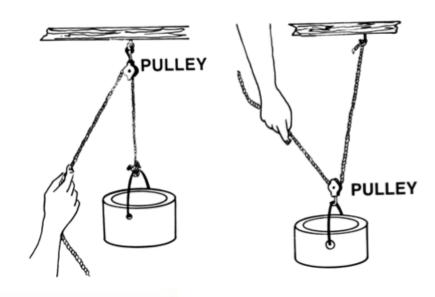
Lesson Outcome

At the end of lesson, students will be able to:

- sketch free body diagram (FDB).
- use equations of equilibrium in solving a 2-D problem.

Fundamental Quiz

- What is the sum of forces acting on a particle which is in equilibrium condition?
- What are the tension forces in the cables, if the pulleys are frictionless?



Applications

 What are the forces in cables of crane in carrying up the locomotive?

Applications

 For a given cable strength, what is the maximum weight of chandelier that can be hold?

Conditions for Equilibrium of Particle (2-D)

- Particles are at equilibrium if they are at rest or moving with a constant velocity.
- At these conditions, we can apply:
- 1) Newton's 1^{st} law of motion, $\Sigma F = 0$

where ΣF is the vector sum of all the forces acting on the particle

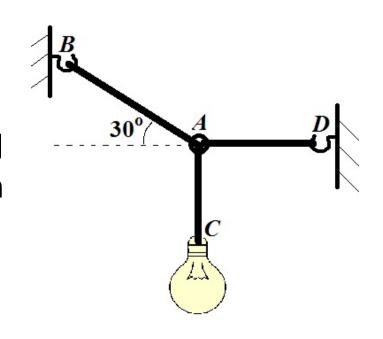
2) Newton's 2^{nd} law of motion, $\Sigma F = ma$ where the force fulfill Newton's 1^{st} law of motion,

$$ma = 0$$

$$a = 0$$

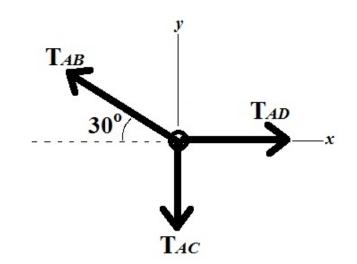
Equilibrium of Particle (2-D)

- The image shows an example of a
 2-D or coplanar force system.
- If the whole lamp assembly is in equilibrium, then particle A (the ring) is also in equilibrium.
- The tensions in cables AB, AC and AD can be determined for a given weight of lamp at C.
- You need to learn how to draw a free body diagram (FBD) and apply equations of equilibrium.



Free Body Diagram (FBD)

- FBD is the most important thing before you start an analysis.
- You must understand the way to draw and use it.
- It shows a sketch that includes all external forces that are acting on a particle.
- The FBD assists us in writing the equations of equilibrium that are used to solve all the unknowns (it can be forces or angles).

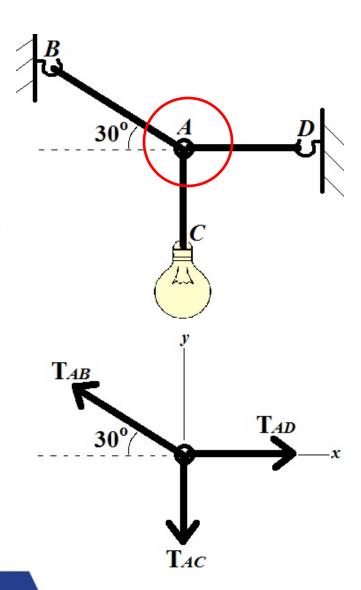


How to draw the FBD?

- Isolate / take out the particle from its surroundings.
- Indicate all forces that act on the particle.

Active force tends to move the particle. Reactive force tends to resist the motion.

- Identify all forces and show all known magnitudes and directions.
- Label all unknown magnitudes and / or directions as variables.



TAD

FBD at A

Equations of Equilibrium (for 2-D)

Since particle A is in equilibrium, the total force at A is zero.
 Therefore, tension force (T)

$$T_{AB} + T_{AC} + T_{AD} = 0$$
 or $\Sigma F = 0$

In general, for a particle in equilibrium,

$$\Sigma F = 0$$
 or $\Sigma F_{i} + \Sigma F_{i} = 0 = 0 + 0$

$$\Sigma F_x \mathbf{i} + \Sigma F_y \mathbf{j} = 0 = 0 \mathbf{i} + 0 \mathbf{j}$$
 (vector equation)

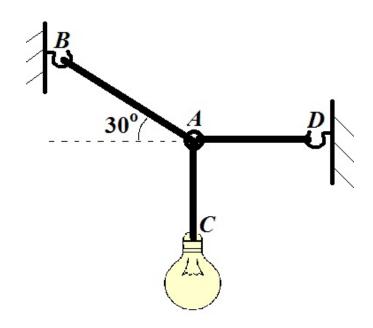
$$\Sigma F_x = 0$$
 and $\Sigma F_y = 0$ (scalar form)

 The two scalar equations of equilibrium (EoE), as shown above can be used to solve for two unknowns.

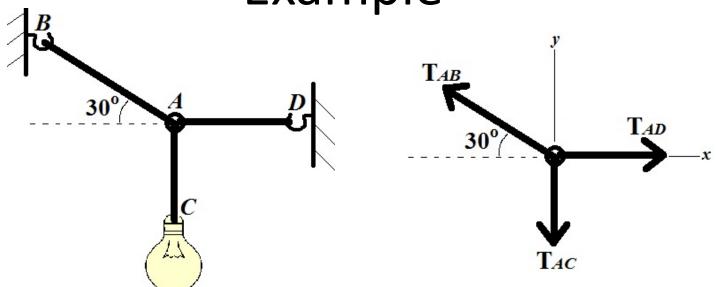
 T_{AB}

Example

Calculate the tensions in the cables if the weight of the lamp is 2 kg.



Example



Lamp mass = 2 kg

Lamp weight = $2 \text{ kg x } 9.81 \text{ m/s}^2 = 19.62 \text{ N}$

Use scalar EoE:

$$+ \rightarrow \Sigma F_x = T_{AD} - T_{AB} \cos 30^\circ = 0$$
 -----(1)

$$+ \uparrow \Sigma F_y = T_{AB} \sin 30^\circ - 19.62 N = 0 -----(2)$$

From (2);
$$T_{AB} = 39.24 N$$

Substitute $T_{AB} = 39.24 \text{ N in (1)}$; $T_{AD} = 33.98 \text{ N}$

Springs

Spring force = spring constant * deformation
 F = k * s

where deformation (s) can be either elongation or shortening.

Example:

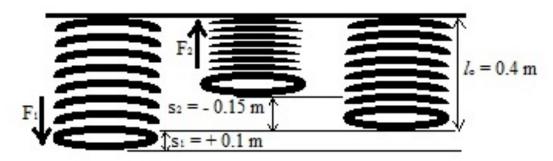
Given spring with **original length**, $I_o = 0.4$ m and **spring constant**, k = 200 N/m.

When the **elongation** $s_1 = + 0.1 \text{ m}$,

Force needed to **stretch** the spring, $F_1 = (200 \text{ N/m})(0.1 \text{ m}) = 20 \text{ N}$

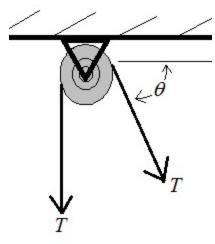
When the shortening $s_2 = -0.15$ m,

Force needed to **compress** the spring, $F_2 = (200 \text{ N/m})(0.15 \text{ m}) = 30 \text{ N}$



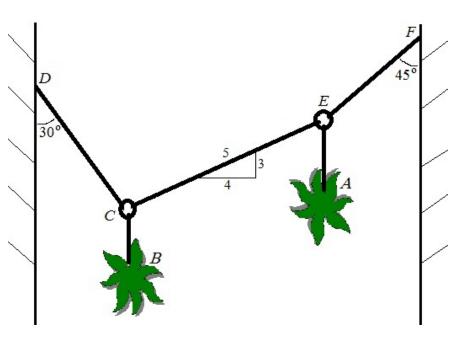
Cables and Pulleys

- Cables (or cords) are assumed to have negligible weight and they cannot stretch.
- A cable only supports tension (or pulling force) and acts in the direction of the cable.
- For any given angle θ , the cable is subjected to a constant tension T throughout its length.



Cable is in tension

Example



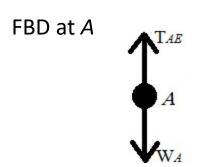
Given decoration A weighs 20 N as shown in figure.

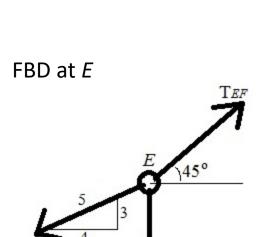
Find forces in the cables and weight of decoration *B*.

Steps

- Sketch FBD for decoration at A and ring at E. Assume both items as particles.
- 2. Apply EoE at point *E* to solve for the unknowns.
- 3. Do this process again at C.

Example (continued)





Assume that all cables are in tension. Given $W_A = 20 \text{ N}$

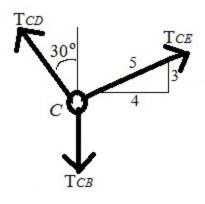
$$\frac{\text{FBD } A}{+ \uparrow \Sigma \text{ F}_{y} = 0; \text{ T}_{AE} - \text{W}_{A} = 0}$$
$$\text{T}_{AE} = 20 \text{ N} = \text{T}_{EA}$$

FBD E

$$+ \rightarrow \Sigma$$
 F_x = 0; T_{EF} cos 45° - T_{EC} (4/5) = 0 ------(1)
 $+ \uparrow \Sigma$ F_y = 0; T_{EF} sin 45° - T_{EC} (3/5) - 20 N = 0 --(2)
From (1); T_{EF} = T_{EC} (4/5)/cos 45° -----(3)
Substitute (3) in (2); **T**_{EC} = **100** N = T_{CE}
Substitute T_{EC} = 100 N in (3); **T**_{EF} = **113.14** N

Example (continued)

FBD at C

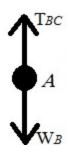


FBD C

+→Σ
$$F_x = 0$$
; $T_{CE} (4/5) - T_{CD} \sin 30^\circ = 0$ -----(4)
+↑Σ $F_y = 0$; $T_{CE} (3/5) + T_{CD} \cos 30^\circ - T_{CB} = 0$ ----(5)
From (4); $T_{CD} = 160$ N Substitute $T_{CD} = 160$ N in (5);

$$T_{CB} = 198.564 N = T_{BC}$$

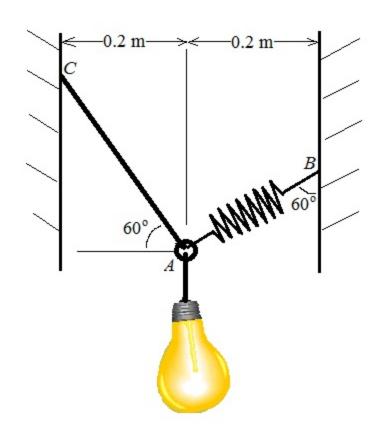
FBD at B



$$+ \uparrow \Sigma F_y = 0; T_{BC} - W_B = 0$$

$$W_B = 198.56 N$$

Example



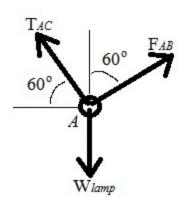
Given a lamp as shown in figure with mass 0.4 kg which is suspended by cable AC and spring AB.

Known that the unstretched length of spring *AB* is 0.2 m.

Determine the spring constant k_{AB}.

Example (continued)

FBD at A



Given mass of lamp = 0.4 kg

Thus, weight of lamp, $W_{lamp} = 0.4 \text{ kg x } 9.81 \text{ m/s}^2 = 3.924 \text{ N}$

FBD A

$$+ \rightarrow \Sigma F_x = 0$$
; $F_{AB} \sin 60^\circ - T_{AC} \cos 60^\circ = 0$ -----(1)

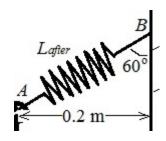
$$+ \Upsilon \Sigma F_y = 0$$
; $F_{AB} \cos 60^\circ + T_{AC} \sin 60^\circ - 3.924 = 0$ -----(2)

Solve (1) and (2);

 $T_{AC} = 3.398 N$

 $F_{AB} = 1.962 N$

Spring AB geometry



Given unstretched spring length, Linitial = 0.2 m

From spring AB geometry, $L_{after} = 0.2 / (\sin 60) = 0.231 \text{ m}$

Spring force, F = k * s

 $F_{AB} = k_{AB} * (L_{after} - L_{initial})$

Thus, spring constant, $k_{AB} = 63.29 \text{ N/m}$

End of Lesson

Recall:

- What are the conditions for equilibrium of particle?
- Can you mention two Newton's Laws of Motion?
 - What is FBD?
 - How to draw the FBD?
 - What are two scalar equations of equilibrium?
 - How many unknowns can be determined from the two scalar EoE?

References

 Hibbeler, R.C. and Yap, K.B., 2013, Mechanics for Engineers – Statics, Thirteenth SI Edition, Pearson, Singapore.

