INTRODUCTION TO MECHANICAL ENGINEERING

BMCG 2423 STATICS : EQUILIBRIUM OF PARTICLE

Dr. Rafidah Hasan ${ }^{1}$, Dr. Mohd Juzaila Abd Latif ${ }^{2}$
${ }^{1}$ rafidahhasan@utem.edu.my , ${ }^{2}$ juzaila@utem.edu.my

Lesson Outcome

At the end of lesson, students will be able to:

- sketch free body diagram (FDB).
- use equations of equilibrium in solving a 2-D problem.

Fundamental Quiz

- What is the sum of forces acting on a particle which is in equilibrium condition?
- What are the tension forces in the cables, if the pulleys are frictionless?

Applications

- What are the forces in cables of crane in carrying up the locomotive?

Applications

- For a given cable strength, what is the maximum weight of chandelier that can be hold?

Conditions for

Equilibrium of Particle (2-D)

- Particles are at equilibrium if they are at rest or moving with a constant velocity.
- At these conditions, we can apply:

1) Newton's $1^{\text {st }}$ law of motion, $\mathbf{\Sigma F}=\mathbf{0}$
where $\boldsymbol{\Sigma F}$ is the vector sum of all the forces acting on the particle
2) Newton's $2^{\text {nd }}$ law of motion, $\mathbf{\Sigma F}=$ ma where the force fulfill Newton's $1^{\text {st }}$ law of motion,

$$
\begin{aligned}
\mathrm{ma} & =0 \\
\mathrm{a} & =0
\end{aligned}
$$

Equilibrium of Particle (2-D)

- The image shows an example of a 2-D or coplanar force system.
- If the whole lamp assembly is in equilibrium, then particle A (the ring) is also in equilibrium.
- The tensions in cables $A B, A C$ and $A D$ can be determined for a given weight of lamp at C.
- You need to learn how to draw a free body diagram (FBD) and apply equations of equilibrium.

Free Body Diagram (FBD)

- FBD is the most important thing before you start an analysis.
- You must understand the way to draw and use it.
- It shows a sketch that includes all external forces that are acting on

- The FBD assists us in writing the equations of equilibrium that are used to solve all the unknowns (it can be forces or angles).

How to draw the FBD?

- Isolate / take out the particle from its surroundings.
- Indicate all forces that act on the particle.
Active force tends to move the particle. Reactive force tends to resist the motion.
- Identify all forces and show all known magnitudes and directions.
- Label all unknown magnitudes and / or directions as variables.

Equations of Equilibrium (for 2-D)

- Since particle A is in equilibrium, the total force at A is zero. Therefore, tension force (T)

$$
\mathrm{T}_{A B}+\mathrm{T}_{A C}+\mathrm{T}_{A D}=0 \quad \text { or } \quad \Sigma \mathrm{F}=0
$$

- In general, for a particle in equilibrium,

$$
\begin{aligned}
& \Sigma F=0 \text { or } \\
& \Sigma F_{x} i+\Sigma F_{y} j=0=0 i+0 j \text { (vector equation) }
\end{aligned}
$$

$$
\boldsymbol{\Sigma} \mathbf{F}_{x}=\mathbf{0} \text { and } \boldsymbol{\Sigma} \mathbf{F}_{y}=\mathbf{0} \text { (scalar form) }
$$

- The two scalar equations of equilibrium (EoE), as shown above can be used to solve for two unknowns.

Example

Calculate the tensions in the cables if the weight of the lamp is 2 kg .

Example

Lamp mass $=2 \mathrm{~kg}$
Lamp weight $=2 \mathrm{~kg} \times 9.81 \mathrm{~m} / \mathrm{s}^{2}=19.62 \mathrm{~N}$
Use scalar EoE:
$+\rightarrow \Sigma \mathrm{F}_{x}=\mathrm{T}_{A D}-\mathrm{T}_{A B} \cos 30^{\circ}=0$
$+\uparrow \Sigma \mathrm{F}_{y}=\mathrm{T}_{A B} \sin 30^{\circ}-19.62 \mathrm{~N}=0--------(2)$
From (2); $\mathrm{T}_{A B}=39.24 \mathrm{~N}$
Substitute $\mathrm{T}_{A B}=39.24 \mathrm{~N}$ in (1); $\mathrm{T}_{A D}=33.98 \mathrm{~N}$

Springs

- Spring force = spring constant * deformation

$$
F=k * s
$$

where deformation (s) can be either elongation or shortening.

- Example:

Given spring with original length, $I_{\mathrm{o}}=0.4 \mathrm{~m}$ and spring constant, $\mathrm{k}=$ 200 N/m.
When the elongation $\mathrm{s}_{1}=+0.1 \mathrm{~m}$,
Force needed to stretch the spring, $\mathrm{F}_{1}=(200 \mathrm{~N} / \mathrm{m})(0.1 \mathrm{~m})=20 \mathrm{~N}$ When the shortening $\mathrm{s}_{2}=-0.15 \mathrm{~m}$,
Force needed to compress the spring, $F_{2}=(200 \mathrm{~N} / \mathrm{m})(0.15 \mathrm{~m})=30 \mathrm{~N}$

Cables and Pulleys

- Cables (or cords) are assumed to have negligible weight and they cannot stretch.
- A cable only supports tension (or pulling force) and acts in the direction of the cable.
- For any given angle θ, the cable is subjected to a constant tension T throughout its length.

Example

Given decoration A weighs 20 N as shown in figure.
Find forces in the cables and weight of decoration B.

Steps

1. Sketch FBD for decoration at A and ring at E. Assume both items as particles.
2. Apply EoE at point E to solve for the unknowns.
3. Do this process again at C .

Example (continued)

Assume that all cables are in tension.
Given $W_{A}=20 \mathrm{~N}$

FBD A
$+\uparrow \Sigma \mathrm{F}_{y}=0 ; \mathrm{T}_{A E}-\mathrm{W}_{A}=0$

$$
\mathrm{T}_{A E}=20 \mathrm{~N}=\mathrm{T}_{E A}
$$

FBD E
$+\rightarrow \Sigma \mathrm{F}_{x}=0 ; \mathrm{T}_{E F} \cos 45^{\circ}-\mathrm{T}_{E C}(4 / 5)=0$
$+\uparrow \Sigma \mathrm{F}_{y}=0 ; \mathrm{T}_{E F} \sin 45^{\circ}-\mathrm{T}_{E C}(3 / 5)-20 \mathrm{~N}=0-$-(2)
From (1); $\mathrm{T}_{E F}=\mathrm{T}_{E C}(4 / 5) / \cos 45^{\circ}$
Substitute (3) in (2); $\mathrm{T}_{E C}=\mathbf{1 0 0} \mathbf{N}=\mathrm{T}_{C E}$
Substitute $T_{E C}=100 \mathrm{~N}$ in (3); $\mathrm{T}_{E F}=\mathbf{1 1 3 . 1 4} \mathbf{N}$

Example (continued)

FBD at C

FBD at B

FBD C
$+\rightarrow \Sigma \mathrm{F}_{x}=0 ; \mathrm{T}_{C E}(4 / 5)-\mathrm{T}_{C D} \sin 30^{\circ}=0$
$+\uparrow \Sigma \mathrm{F}_{y}=0 ; \mathrm{T}_{C E}(3 / 5)+\mathrm{T}_{C D} \cos 30^{\circ}-\mathrm{T}_{C B}=0$
From (4); $\mathbf{T c D}=160 \mathbf{N}$
Substitute $\mathrm{T}_{C D}=160 \mathrm{~N}$ in (5);
$\mathrm{T}_{C B}=198.564 \mathrm{~N}=\mathrm{T}_{B C}$
FBD B
$+\uparrow \Sigma F_{y}=0 ; T_{B C}-W_{B}=0$
$W_{B}=198.56 \mathrm{~N}$

Example

Given a lamp as shown in figure with mass 0.4 kg which is suspended by cable $A C$ and spring $A B$. Known that the unstretched length of spring $A B$ is 0.2 m .

Determine the spring constant kAB.

Example (continued)

Spring $A B$ geometry

Given mass of lamp $=0.4 \mathrm{~kg}$
Thus, weight of lamp, $W_{\text {lamp }}=0.4 \mathrm{~kg} \times 9.81 \mathrm{~m} / \mathrm{s}^{2}=3.924 \mathrm{~N}$ FBD A
$+\rightarrow \Sigma F_{X}=0 ; F_{A B} \sin 60^{\circ}-T_{A C} \cos 60^{\circ}=0-\cdots-\cdots-\cdots-\cdots-\cdots--(1)$
$+\uparrow \Sigma F_{y}=0 ; F_{A B} \cos 60^{\circ}+T_{A C} \sin 60^{\circ}-3.924=0$
Solve (1) and (2);
$\mathrm{T}_{A C}=3.398 \mathrm{~N}$
$F_{A B}=1.962 \mathrm{~N}$

Given unstretched spring length, $L_{\text {initial }}=0.2 \mathrm{~m}$
From spring $A B$ geometry, Lafter $=0.2 /(\sin 60)=0.231 \mathrm{~m}$
Spring force, $\mathrm{F}=\mathrm{k} * \mathrm{~s}$
$\mathrm{F}_{A B}=\mathrm{k}_{A B} *\left(\right.$ Lafter $\left.-L_{\text {initial }}\right)$
Thus, spring constant, $\mathbf{k}_{A B}=\mathbf{6 3 . 2 9} \mathbf{N} / \mathrm{m}$

End of Lesson

Recall:
 - What are the conditions for equilibrium of particle?

- Can you mention two Newton's Laws of Motion?
- What is FBD?
- How to draw the FBD?
- What are two scalar equations of equilibrium?
- How many unknowns can be determined from the two scalar EoE?

References

- Hibbeler, R.C. and Yap, K.B., 2013, Mechanics for Engineers - Statics, Thirteenth SI Edition, Pearson, Singapore.

