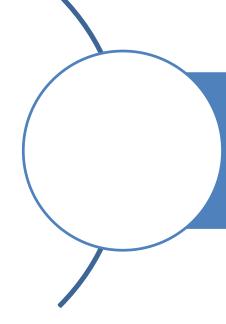


OPENCOURSEWARE

ADVANCED ELECTRICAL CIRCUIT BETI 1333 SECOND ORDER SOURCE-FREE SERIES RLC CIRCUIT

Halyani binti Mohd Yassim

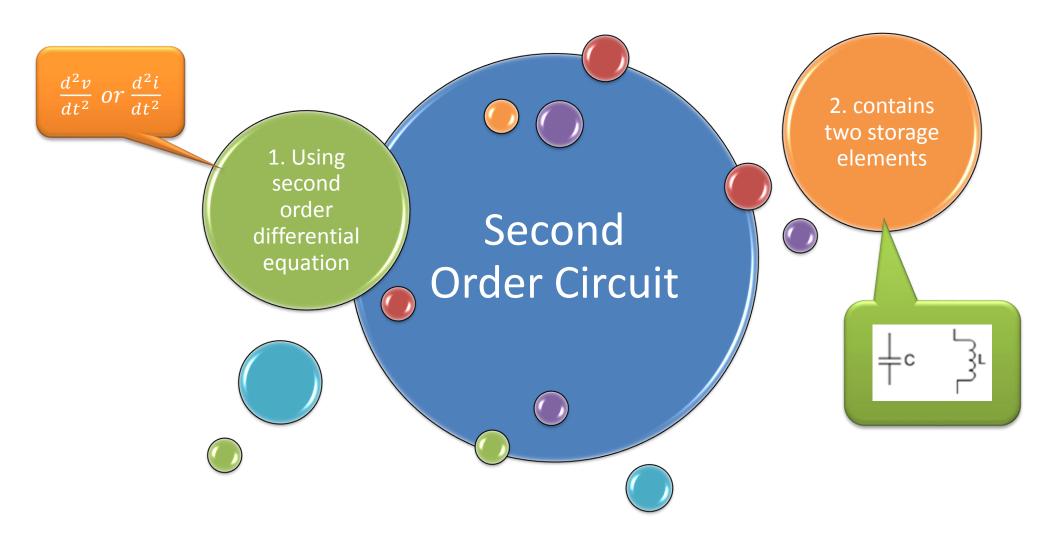

halyani@utem.edu.my

LESSON OUTCOME

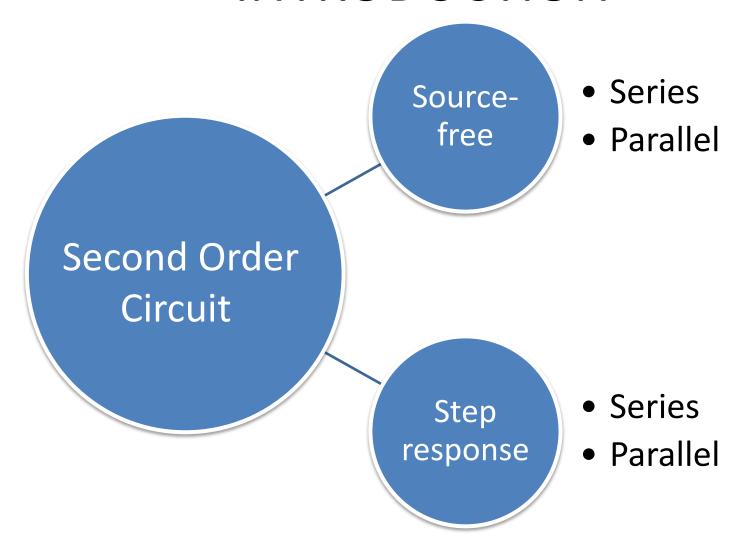
At the end of this chapter, students are able:

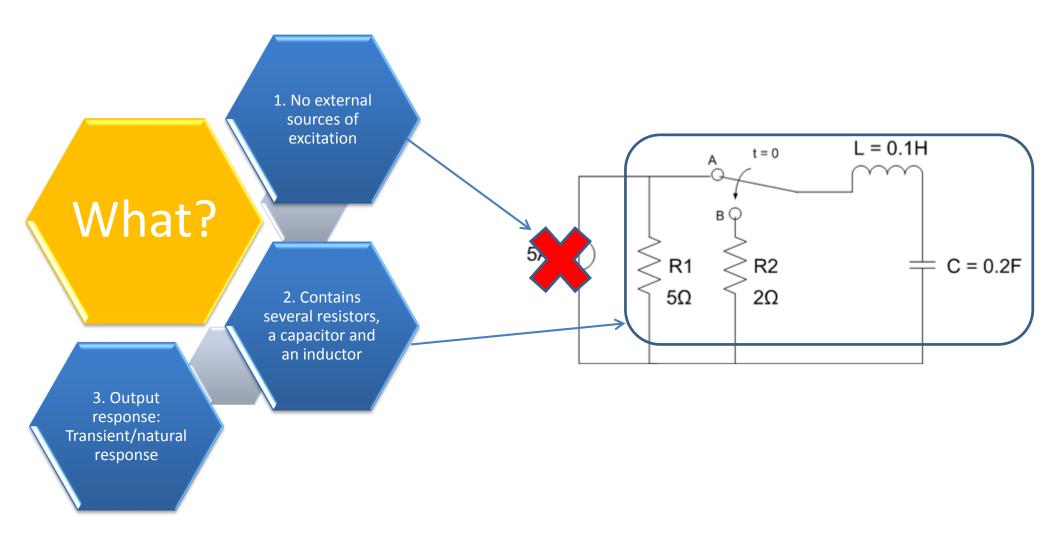
to describe second order source-free series RLC circuit

SUBTOPICS


Introduction of Second Order Circuit

Source-free Series RLC Circuit


INTRODUCTION


INTRODUCTION

SOURCE-FREE SERIES RLC CIRCUIT

SOURCE-FREE SERIES RLC CIRCUIT

Source-free Series RLC Circuit

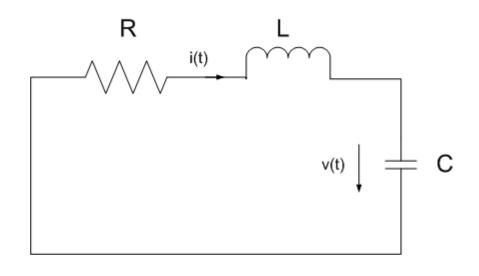
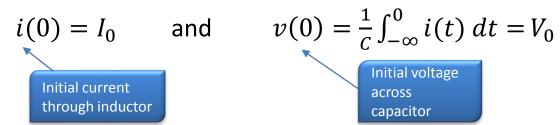



Figure 1

Assumption:

By Applying Kirchhoff's Voltage Law:

$$V_R + V_L + V_C = 0$$

$$Ri + L\frac{di}{dt} + \frac{1}{C} \int_{-\infty}^{0} i(t) dt = 0$$

Second order differential equation:

$$\frac{d^2i}{dt^2} + \frac{R}{L}\frac{di}{dt} + \frac{1}{LC}i = 0$$

SOURCE-FREE SERIES RLC CIRCUIT

$$s^{2} + \frac{R}{L}s + \frac{1}{LC} = 0$$

$$s_{1,2} = -\frac{R}{2L} \pm \sqrt{\left(\frac{R}{2L}\right)^{2} - \frac{1}{LC}}$$
Roots of the characteristic equation

$$\alpha = \frac{R}{2L},$$
Damping factor

$$\omega_0 = \frac{1}{\sqrt{LC}}$$
Undamped natural frequency

Types of natural response of source-free series RLC circuit:

- 1. Overdamped response $(\alpha > \omega_0)$ $i(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$
- 2. Critically damped response $(\alpha = \omega_0)$ $i(t) = (A_2 + A_1 t)e^{-\alpha t}$
- 3. Underdamped response ($\alpha < \omega_0$) $i(t) = e^{-\alpha t} (B_1 \cos \omega_d t + B_2 \sin \omega_d t)$

<u>Note:</u> A_1 and A_2 can be determined from the initial conditions namely i(0) and $\frac{di(0)}{dt}$.

$$\frac{di(0)}{dt} = -\frac{1}{L}(RI_0 + V_0)$$

EXAMPLE 1

The switch in Figure 2 moves from position A to B at t = 0. Find i(t) for t > 0.

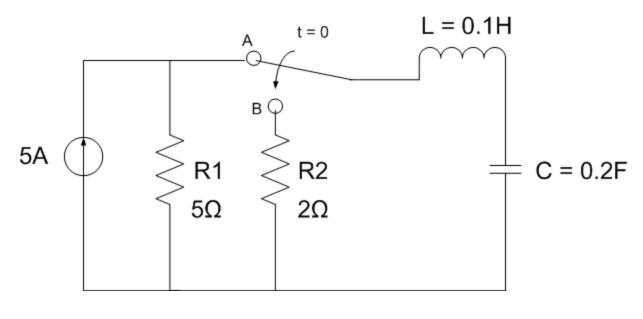


Figure 2

Step 1: Find initial voltage across capacitor, V_0 and initial current through inductor, I_0 when t < 0.

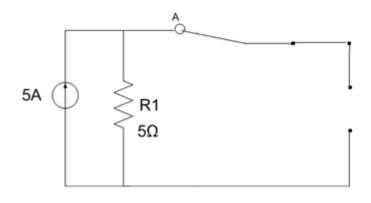


Figure 3

$$i(0) = 0A$$

$$v(0) = iR = 5A * 5\Omega = 25V$$

Tips 1:

When t < 0, capacitor acts like an open circuit and inductor acts like a short circuit.

Tips 2:

There is no current flow through inductor due to open circuit.

Step 2: Determine type of natural response of this circuit when t > 0.

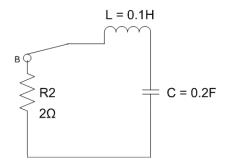


Figure 4

$$\alpha = \frac{R}{2L} = \frac{2}{2 * 0.1} = 10, \quad \omega_0 = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{0.1 * 0.2}} = 7.071$$

 $\alpha > \omega_0 \rightarrow \text{overdamped response}$

Current response for overdamped case:

$$i(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$$

Step 3: Find roots of characteristic equation for this circuit.

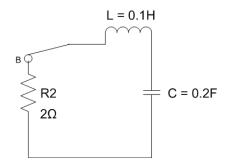


Figure 5

$$s_{1,2} = -\frac{R}{2L} \pm \sqrt{\left(\frac{R}{2L}\right)^2 - \frac{1}{LC}}$$

$$s_{1,2} = -\frac{2}{2*0.1} \pm \sqrt{\left(\frac{2}{2*0.1}\right)^2 - \frac{1}{0.1*0.2}}$$

$$s_{1,2} = -0.36, -19.64$$

Step 4: Determine A_1 and A_2 from initial conditions

$$i(0)$$
 and $\frac{di(0)}{dt}$, when t > 0.

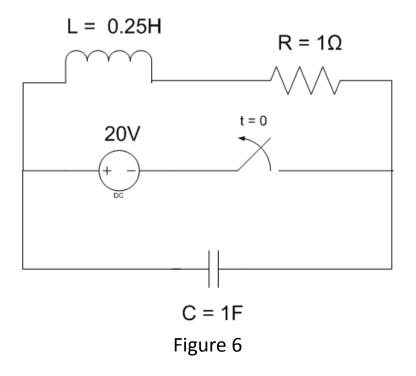
$$i(0) = A_1 e^{-0.36(0)} + A_2 e^{-19.64(0)} = 0A$$

$$A_1 + A_2 = 0 \rightarrow A_1 = -A_2$$

$$\frac{di(0)}{dt} = -\frac{1}{L}(RI_0 + V_0) = -\frac{1}{0.1}(2(0) + 25) = -250\frac{A}{s}$$

$$\frac{di}{dt} = -0.36 * A_1 e^{-0.36t} - 19.64 * A_2 e^{-19.64t}$$

$$\frac{di(0)}{dt} = -0.36 * A_1 e^{-0.36(0)} - 19.64 * A_2 e^{-19.64(0)} = -250$$
$$0.36 * A_2 - 19.64 * A_2 = -250 \rightarrow A_2 = 13$$
$$\rightarrow A_1 = -13$$


Current response:

$$i(t) = -13e^{-0.36t} + 13e^{-19.64}A$$

EXAMPLE 2

Calculate i(t) for t > 0 in the circuit of Figure 6.

Step 1: Find initial voltage across capacitor, V_0 and initial current through inductor, I_0 when t < 0.

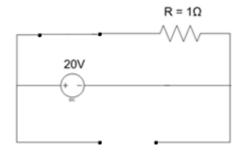


Figure 7

$$V_0 = 20V$$

$$I_0 = \frac{V}{R} = \frac{20V}{1.0} = 20A$$

Tips 1:

When t < 0, capacitor acts like an open circuit and inductor acts like a short circuit.

Tips 2:

Current flows through inductor, which is less resistance than capacitor.

Step 2: Determine type of natural response of this circuit when t > 0.

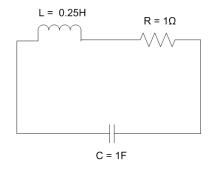


Figure 8

$$\alpha = \frac{R}{2L} = \frac{1}{2 * 0.25} = 2$$
, $\omega_0 = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{0.25 * 1}} = 2$

 $\alpha = \omega_0 \rightarrow \text{critically damped response}$

Current response for critically damped case:

$$i(t) = (A_2 + A_1 t)e^{-\alpha t}$$

Step 3: Determine A_1 and A_2 from initial conditions

$$i(0)$$
 and $\frac{di(0)}{dt}$, when t > 0.

$$i(0) = (A_2 + A_1(0))e^{-2(0)} = 20A, \rightarrow A_2 = 2$$

$$\frac{di(0)}{dt} = -\frac{1}{L}(RI_0 + V_0) = -\frac{1}{0.25}(1(20) + 20) = -160\frac{A}{s}$$

$$\frac{di}{dt} = -2(A_2 + A_1 t)e^{-2t} + A_1 e^{-2t}$$

$$\frac{di(0)}{dt} = -2(2 + A_1(0))e^{-2(0)} + A_1e^{-2(0)} = -160$$
$$-4 + A_1 = -160 \rightarrow A_1 = -156$$

Current response:

$$i(t) = (2 - 156t)e^{-2t}A$$

SELF REVIEW QUESTIONS

1. A source-free RL circuit is an example of second order circuit.

TRUE

FALSE

2. Name two storage elements in a second order source-free RLC circuit.

Answer: _____

- 3. Given $R = 10\Omega$ and C = 0.5F. Determine the value of L so that the natural response of source-free series RLC circuit is critically damped response.
 - a) 1.25H

b) 12.5H

c) 125H

d) 0.125H

- 4. Following is TRUE about a second order circuit **except**
- a) consists of a resistor and two capacitors in a circuit
- b) is described using second order differential equation
- c) consists of one storage elements
- d) has three types of natural response
- 5. Given L = 2H and C = 4F. Interpret the value of R when $\alpha > \omega_0$.
 - a) R > 2

b) R < 0.5

c) R > 0.2

d) R < 5

ANSWERS

- 1. FALSE
- 2. Inductor and capacitor
- 3. b
- 4. c
- 5. a