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LEARNING OBJECTIVES -

1. Derive the equation of motion

2. Calculate the natural frequencies and
mode shape functions
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System with one or two degrees of freedom is still relatively easy for analysis.

Two degrees of freedom system:

Two equations of motion

Two natural frequencies

Two modes of vibration

Two resonances

(Discrete system)
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A more complex system with infinite degrees of freedom:

Finite Element Analysis

(Continuous system)

1st Frequency Mode In Range { 15.368 Hz )
Max: 1.304e-001
Min: 0.000e+000
2007/11/27 08:36

0.130
0.116
0.101
0.087
0.072
0.058
0.043
0.029

0.014
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Degree of Freedom (DOF):

“Minimum number of independent coordinates to specify
the motion of a system”
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How many DOFs?




OPENCOURSEWARE

DERIVATION OF EQUATION OF MOTION




Newton’s Law

Derive the equations of motion from the following system.

— x1(t) — xo(t)
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1. For mass

|—>X1(t) !—>X2(t)




The Newton 2nd Law (at mass /M7 )

m1 X1

> F

—FH+F

m1>"<1 F1

—kixy + ko(xo — x1) = miXxq

After rearrangement, we obtain the 1st EOM:

miXi + (ki + ke2)x1 — koxo =0
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2. For mass m»

— Xl(t) — Xg(t)




The Newton 2nd Law (at mass /112 )

Z F = m2>"<2

—F2 + F3 = maXx; F

—ka(xo — x1) — k3xo = moXo

After rearrangement, we obtain the 2rd EOM:

myxo — koxi + (ko + k3)xo = 0
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2-DOF system:

Two equations of motion:

mixy + (kl -+ kg)Xl — koxo =0
MoXo — KoX1 + (kz -+ k3)X2 =0
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Watch the video: “MDOF Deriving the Equation of Motion (A quick way)”

Scan this QR code

=

[=];.

Or click/tap here.


https://www.youtube.com/watch?v=u5mVhSC5-zE&t=15s

Lagrange’s Equation

S odjoTy_oT ov_ ..
dt \ox. ]  ox  ox 7
| - )

X . Independent coordinates
T : Kinetic energy
V' . Potential energy

Joseph-Louis de Lagrange
(1736-1813)




Derive the equations of motion using the Lagrange’s equation.
— x1(t) — xo(t)

mq

k1
Total Kinetic Energy: —— S —
| 1 - 2 1 - 2
| T = 5 M1.Xq -+ 5 MaX5

Total Potential Energy:

— = B —
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For coordinate Xj :

d /0T d . .
( ) = — (lel) = M X1

dt \ Ox; dt
oT
Y1 0
(3’x1
V
g—xl = kixy + ka(x1 — x2)

From Lagrange’s equation:

mixy + (kl -+ kz)Xl — koxo =0

For coordinate X :

d /0T d _ .
( ) (m2x2) — My X5

dt \ 9% )  dt

oT

oo

oV

6—)(2 — k2(X1 — XQ)(—].) —|— k3X2

From Lagrange’s equation:

moXo + (kz -+ k3)X2 — kox; =0
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Two equations of motion:

mix1 + (ki + ko)x1 — koxp = 0
MoXo — KoX1 + (k2 —+ k3)X2 =0

Matrix form

_ml 0 _ ()"<1 _kl + k2 —k2 | X1\
<"}4_ — ko ko + k3 { }_O




K

ki + ko —k

General form: For N1 degree-of-freedom system

Mass matrix
n x n

Stiffness matrix
nxn

|

- MX + KX =0

—

Column vector

nx1

— ko ko + k3.




Mx + Kx =0

—

For harmonic motion: /)\</ — XEJWt

yields:

~

[ﬁ—wQM]X:O

A

* Cannot be ZERO

To obtain the solution: (vibration exists)

Determinant



Only TRUE for certain values of W, namely the EIGENVALUES, which are the

natural frequencies of the system.

For /1 degrees of freedom

Wi for 1 =1,2,3,---,n
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— x1(t) — xo(t)

Equations of motion (in matrix):

1 0] [x 2 1] (x|
0 2 {5&2}+ 13| el




By substituting X = Xe'lwt

Solution:

det ( __21

det (

~~

[ﬁ—sz}X:O

det [K — w?M] = 0

O =

(%)




2 —w?o, —1 B
NEE =R

(2 —w?)(3—2w?)—1=0
2wt — 7w +5=0

If ws = w2,then
2w2 — Tws +5 =0

(2ws —B)(ws —1) =0

wszg and w; =1
—_— W = gand w =1

The system has the 1st natural frequency at w1 = 1 rad/s

and the 2nd natural frequency at Wy = \/g rad/s
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MODE SHAPE

“"HOW does the system vibrate at each natural frequency?”



Back to (%) to find relationship between the coordinates:

2 — Cdz —1 Xl
—1 3 — 2w2 X2
We can use any equation of motion from the two EoM:

(2 —w?)Xy — X =0

For wlzlrad/s:—> (2—w2)X1—X2:O
2-1D)Xi—X,=0
X1 = X5

For Wy = \/g rad/s: e (2 —wz)Xl — X5 =0
(2= 5)X; — Xp = 0
“1X = X,

N[O

b=o




The relative amplitude at each natural frequency:
At wg =1lrad/s: — X;=X

If X1 =1,then X, =1

Normalised mode shape function: 01 = {

At Wy = \/g rad/s: — —%Xl = X

If X1 =1,then X5 = —

N

Normalised mode shape function: €b2 — { B
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It explains the behaviour of vibration of the system

1st mode (at 1st natural frequency)

Xl(t) Xz(t)

— —

~ 1
gbl — { } : M1 and M2 move with the same amplitude and in-phase.
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2nd mode(at 2nd natural frequency)

Xl(t) Xz(t)

—_—) <+—

~ 1
Oy = { } : M1 and M2 move in opposite direction (out-of-phase)

with amplitude of M7 two times the amplitude of M
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Continuous structures have infinite number of modes

Rectangular plate with pinned edges

Animation by Dr. Dan Russell, Pen State Univ.



Membrane of a drum

Animation by Dr. Dan Russell, Pen State Univ.



Fixed-free beam

Fixed Free
2 2 2
i h | i
0 0 0
-1 -1 -1
-2 -2 -2

0 0.2 0.4 0.6 0.8 i 0 0.2 0.4 0.6 0.8 h | 0 0.2 0.4 0.6 0.8 i
1st mode 2nd mode 3rd mode

Animation by Dr. Dan Russell, Pen State Univ.



MODAL MATRIX
B = [51 52]

¢1 and ¢2 are also called the EIGENVECTORS

1 1

8=11 05




General free vibration is a superposition of modal components whose amplitudes
are determined by initial conditions.

We can express the response in terms of modal matrix:

x(t) = Bu(t)

B=[p1 ¢ ¢35 - ol

E(t):[Ul U Us --- U/\/]Tejm:



Example: Simply supported beam

2 2 2
o/—\ 0/-\/ 0/\/-\
-1 -1 -1
-20 0.2 0.4 0.6 0.8 1 -20 0.2 0.4 0.6 0.8 1 -20 0.2 0.4 0.6 0.8 i
| ./ mTX .
Mode shape: | ¢(X) = SIn | —— Determme.the .
J [ shape of vibration

Animation by Dr. Dan Russell, Pen State Univ.



Determine the

mmX )
shape of vibration

Mode shape: j ¢(X) — siIn (T

Total vibration — y(X) — ¢(X)U < Actual modal amplitude

T

Scaling factor
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Additional Resources

My website:
http://www.azmaputra.com

AZMA
PUTRA

My white-board animation videos:
http://www.youtube.com/c/AzmaPutra-channel Yo u Tu he



References

A. Putra, R. Ramlan, A. Y. Ismail, Mechanical Vibration: Module 9 Teaching and
Learning Series, Penerbit UTeM, 2014

D. J. Inman, EngineeringVibrations, Pearson, 4th Ed. 2014

S. S. Rao, Mechanical Vibrations, Pearson, 5th Ed. 2011



