

MECHANICAL VIBRATION

BMCG 3233

CHAPTER 5: MULTI-DEGREE OF FREEDOM SYSTEM

ASSOC. PROF. DR. AZMA PUTRA

Centre for Advanced Research on Energy, UTeM azma.putra@utem.edu.my

CONTENTS

5.1 Derivation of Equations of Motion5.2 Matrix Operation

LEARNING OBJECTIVES

- 1. Derive the equation of motion
- 2. Calculate the natural frequencies and mode shape functions

System with one or two degrees of freedom is still relatively easy for analysis.

(Discrete system)

Two degrees of freedom system:

- Two equations of motion
- Two natural frequencies
- Two modes of vibration
- Two resonances

A more complex system with infinite degrees of freedom: Finite Element Analysis

(Continuous system)

Degree of Freedom (DOF):

"Minimum number of independent coordinates to specify the motion of a system"

How many DOFs?

DERIVATION OF EQUATION OF MOTION

Derive the equations of motion from the following system.

1. For mass m_1

Reaction forces at the mass

The Newton 2nd Law (at mass m_1)

$$\sum F = m_1 \ddot{x}_1$$

$$-F_1 + F_2 = m_1 \ddot{x}_1$$

$$-k_1 x_1 + k_2 (x_2 - x_1) = m_1 \ddot{x}_1$$

$$F_1 \longleftarrow m_1 \longrightarrow F_2$$

After rearrangement, we obtain the 1st EOM:

$$m_1\ddot{x}_1 + (k_1 + k_2)x_1 - k_2x_2 = 0$$

2. For mass m_2

The Newton 2nd Law (at mass m_2)

$$\sum F = m_2 \ddot{x}_2$$

$$-F_2 + F_3 = m_2 \ddot{x}_2$$

$$-k_2(x_2 - x_1) - k_3 x_2 = m_2 \ddot{x}_2$$

$$m_2 \ddot{x}_2$$

$$F_2 \longleftarrow m_2 \longrightarrow F_3$$

After rearrangement, we obtain the 2nd EOM:

$$m_2\ddot{x}_2 - k_2x_1 + (k_2 + k_3)x_2 = 0$$

2-DOF system:

Two equations of motion:

$$m_1\ddot{x}_1 + (k_1 + k_2)x_1 - k_2x_2 = 0$$

 $m_2\ddot{x}_2 - k_2x_1 + (k_2 + k_3)x_2 = 0$

Watch the video: "MDOF Deriving the Equation of Motion (A quick way)"

Scan this QR code

Or click/tap here.

Lagrange's Equation

$$\frac{d}{dt}\left(\frac{\partial T}{\partial \dot{x}_i}\right) - \frac{\partial T}{\partial x_i} + \frac{\partial V}{\partial x_i} = 0; \quad i = 1, 2, \cdots$$

X: Independent coordinates

T: Kinetic energy

V: Potential energy

Joseph-Louis de Lagrange (1736-1813)

Derive the equations of motion using the Lagrange's equation.

Total Kinetic Energy:

$$T = \frac{1}{2}m_1\dot{x}_1^2 + \frac{1}{2}m_2\dot{x}_2^2$$

Total Potential Energy:

$$V = \frac{1}{2}k_1x_1^2 + \frac{1}{2}k_2(x_1 - x_2)^2 + \frac{1}{2}k_3x_2^2$$

For coordinate X_1 :

$$\frac{\mathsf{d}}{\mathsf{d}t}\left(\frac{\partial T}{\partial \dot{x}_1}\right) = \frac{\mathsf{d}}{\mathsf{d}t}\left(m_1\dot{x}_1\right) = m_1\ddot{x}_1$$

$$\frac{\partial T}{\partial x_1} = 0$$

$$\frac{\partial V}{\partial x_1} = k_1 x_1 + k_2 (x_1 - x_2)$$

From Lagrange's equation:

$$m_1\ddot{x}_1 + (k_1 + k_2)x_1 - k_2x_2 = 0$$

For coordinate X_2 :

$$\frac{\mathsf{d}}{\mathsf{d}t} \left(\frac{\partial T}{\partial \dot{x}_1} \right) = \frac{\mathsf{d}}{\mathsf{d}t} \left(m_2 \dot{x}_2 \right) = m_2 \ddot{x}_2$$

$$\frac{\partial T}{\partial x_2} = 0$$

$$\frac{\partial V}{\partial x_2} = k_2(x_1 - x_2)(-1) + k_3x_2$$

From Lagrange's equation:

$$m_2\ddot{x}_2 + (k_2 + k_3)x_2 - k_2x_1 = 0$$

MATRIX OPERATION

Two equations of motion:

$$m_1\ddot{x}_1 + (k_1 + k_2)x_1 - k_2x_2 = 0$$

$$m_2\ddot{x}_2 - k_2x_1 + (k_2 + k_3)x_2 = 0$$

$$\begin{bmatrix} m_1 & 0 \\ 0 & m_2 \end{bmatrix} \begin{Bmatrix} \ddot{x}_1 \\ \ddot{x}_2 \end{Bmatrix} + \begin{bmatrix} k_1 + k_2 & -k_2 \\ -k_2 & k_2 + k_3 \end{bmatrix} \begin{Bmatrix} x_1 \\ x_2 \end{Bmatrix} = 0$$

$$\underline{\mathbf{M}} \qquad \widetilde{\widetilde{x}} \qquad \underline{\mathbf{K}} \qquad \widetilde{x}$$

$$\begin{bmatrix} m_1 & 0 \\ 0 & m_2 \end{bmatrix} \begin{Bmatrix} \ddot{x}_1 \\ \ddot{x}_2 \end{Bmatrix} + \begin{bmatrix} k_1 + k_2 & -k_2 \\ -k_2 & k_2 + k_3 \end{bmatrix} \begin{Bmatrix} x_1 \\ x_2 \end{Bmatrix} = 0$$

General form: For *n* degree-of-freedom system

$$\underline{\underline{\mathbf{M}}} \ddot{\ddot{x}} + \underline{\mathbf{K}} \widetilde{\ddot{x}} = 0$$
 For harmonic motion: $\widetilde{\mathbf{X}} = \widetilde{X} e^{j\omega t}$

yields:

$$\left[\underline{\mathbf{K}} - \omega^2 \underline{\mathbf{M}}\right] \widetilde{X} = 0$$

To obtain the solution:

Cannot be ZERO (vibration exists)

$$\det\left(\left[\underline{\mathbf{K}}-\omega^2\underline{\mathbf{M}}\right]\right)=0$$

Determinant

$$\det\left(\left[\underline{\mathbf{K}} - \omega^2\underline{\mathbf{M}}\right]\right) = 0$$

Only TRUE for certain values of $\,\omega$, namely the EIGENVALUES, which are the natural frequencies of the system.

For *n* degrees of freedom

$$\omega_i$$
 for $i=1,2,3,\cdots,n$

Example 5.1

Equations of motion (in matrix):

$$\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{Bmatrix} \ddot{x}_1 \\ \ddot{x}_2 \end{Bmatrix} + \begin{bmatrix} 2 & -1 \\ -1 & 3 \end{bmatrix} \begin{Bmatrix} x_1 \\ x_2 \end{Bmatrix} = 0$$

$$\underline{\mathbf{M}}$$

$$\underline{\mathbf{K}}$$

By substituting $\widetilde{x} = \widetilde{X}e^{j\omega t}$

$$\left[\underline{\mathbf{K}} - \omega^2 \underline{\mathbf{M}}\right] \widetilde{X} = 0 \qquad (\star)$$

Solution:

$$\det\left[\underline{\mathbf{K}} - \omega^2\underline{\mathbf{M}}\right] = 0$$

$$\det\left(\begin{bmatrix}2 & -1\\ -1 & 3\end{bmatrix} - \omega^2 \begin{bmatrix}1 & 0\\ 0 & 2\end{bmatrix}\right) = 0$$

$$\det \begin{pmatrix} \begin{bmatrix} 2 - \omega^2 & -1 \\ -1 & 3 - 2\omega^2 \end{pmatrix} = 0$$

$$\det\left(\begin{bmatrix}2-\omega^2 & -1\\ -1 & 3-2\omega^2\end{bmatrix}\right) = 0$$

$$(2-\omega^2)(3-2\omega^2) - 1 = 0$$

$$2\omega^4 - 7\omega^2 + 5 = 0$$

If $\,\omega_s=\omega^2$, then

$$2\omega_s^2 - 7\omega_s + 5 = 0$$
 $(2\omega_s - 5)(\omega_s - 1) = 0$ $\omega_s = \frac{5}{2}$ and $\omega_s = 1$ $\omega = \sqrt{\frac{5}{2}}$ and $\omega = 1$

The system has the 1st natural frequency at $\,\omega_1=1\,\,{
m rad/s}$ and the 2nd natural frequency at $\,\omega_2=\sqrt{rac{5}{2}}\,\,{
m rad/s}$

MODE SHAPE

MODE SHAPE

"HOW does the system vibrate at each natural frequency?"

Back to (★) to find relationship between the coordinates:

$$\begin{bmatrix} 2 - \omega^2 & -1 \\ -1 & 3 - 2\omega^2 \end{bmatrix} \begin{Bmatrix} X_1 \\ X_2 \end{Bmatrix} = 0$$

We can use any equation of motion from the two EoM:

$$(2 - \omega^2)X_1 - X_2 = 0$$

For
$$\omega_1=1 \text{ rad/s}$$
: \longrightarrow $(2-\omega^2)X_1-X_2=0$ $(2-1)X_1-X_2=0$ $X_1=X_2$

For
$$\omega_2 = \sqrt{\frac{5}{2}} \text{ rad/s:} \rightarrow (2 - \omega^2) X_1 - X_2 = 0$$

$$(2 - \frac{5}{2}) X_1 - X_2 = 0$$

$$-\frac{1}{2} X_1 = X_2$$

The relative amplitude at each natural frequency:

At
$$\omega_1 = 1 \text{ rad/s}$$
: \longrightarrow $X_1 = X_2$

If
$$X_1=1$$
, then $X_2=1$

Normalised mode shape function:

$$\widetilde{\phi}_1 = \left\{ egin{matrix} 1 \\ 1 \end{smallmatrix}
ight\}$$

At
$$\omega_2 = \sqrt{\frac{5}{2}} \text{ rad/s:} \longrightarrow -\frac{1}{2}X_1 = X_2$$

If
$$X_1=1$$
, then $X_2=-\frac{1}{2}$

Normalised mode shape function:

$$\widetilde{\phi}_2 = \left\{ egin{matrix} 1 \\ -0.5 \end{smallmatrix}
ight\}$$

It explains the behaviour of vibration of the system

1st mode (at 1st natural frequency)

$$\widetilde{\phi}_1 = \left\{ egin{aligned} 1 \\ 1 \end{aligned}
ight\}$$
 : m_1 and m_2 move with the same amplitude and in-phase.

2nd mode(at 2nd natural frequency)

$$\widetilde{\phi}_2 = \left\{ egin{array}{l} 1 \\ -0.5 \end{array}
ight\}$$
: m_1 and m_2 move in opposite direction (out-of-phase) with amplitude of m_1 two times the amplitude of m_2

Continuous structures have infinite number of modes

Rectangular plate with pinned edges

Animation by Dr. Dan Russell, Pen State Univ.

Membrane of a drum

Animation by Dr. Dan Russell, Pen State Univ.

Fixed-free beam

Animation by Dr. Dan Russell, Pen State Univ.

MODAL MATRIX

$$\underline{\mathbf{B}} = [\widetilde{\phi}_1 \quad \widetilde{\phi}_2]$$

 $\widetilde{\phi}_1$ and $\widetilde{\phi}_2$ are also called the EIGENVECTORS

$$\mathbf{\underline{B}} = \begin{bmatrix} 1 & 1 \\ 1 & -0.5 \end{bmatrix}$$

General free vibration is a superposition of modal components whose amplitudes are determined by initial conditions.

We can express the response in terms of modal matrix:

$$\widetilde{x}(t) = \underline{\mathbf{B}}\widetilde{u}(t)$$

$$\underline{\mathbf{B}} = \begin{bmatrix} \widetilde{\phi}_1 & \widetilde{\phi}_2 & \widetilde{\phi}_3 & \cdots & \widetilde{\phi}_N \end{bmatrix}$$

$$\widetilde{u}(t) = \begin{bmatrix} U_1 & U_2 & U_3 & \cdots & U_N \end{bmatrix}^T e^{j\omega t}$$

Example: Simply supported beam

Mode shape:

$$\phi(x) = \sin\left(\frac{m\pi x}{I}\right)$$

Determine the shape of vibration

Mode shape:

$$\phi(x) = \sin\left(\frac{m\pi x}{L}\right)$$

Determine the shape of vibration

Total vibration
$$\longrightarrow y(x) = \phi(x)U \longleftarrow$$
 Actual modal amplitude \uparrow Scaling factor

Additional Resources

My website:

http://www.azmaputra.com

My white-board animation videos:

http://www.youtube.com/c/AzmaPutra-channel

References

A. Putra, R. Ramlan, A. Y. Ismail, *Mechanical Vibration: Module 9 Teaching and Learning Series*, Penerbit UTeM, 2014

D. J. Inman, Engineering Vibrations, Pearson, 4th Ed. 2014

S. S. Rao, Mechanical Vibrations, Pearson, 5th Ed. 2011