

OPENCOURSEWARE

MULTIMEDIA SYSTEM BITM 1113 ANIMATION (2D & 3D) PART 2.2

Dr. Siti Nurul Mahfuzah Mohamad mahfuzah@utem.edu.my

LIGHTING & SHADING

Types of lights sources

- Point light
- Spot light
- Infinite light
- Area light
- Linear light
- Ambient light

Basic components of the light source

- Position & orientation
- Color & intensity
- Beam angle
- Glow & cone light
- Shadows
 - Umbra
 - the portion of shadow that blocks direct light altogether
 - Penumbra
 - the area in the edges of the shadow that blends with other lights in the environment
 - Softness

Displacement mapping

Texture mapping

Bump mapping

REFLECTION

reflection rendering techniques in 3D include: <u>Cel shading</u>: A method used to look similar the look of animation draw by hand.

<u>Flat shading</u>: A method that shades based on the polygon's "normal" and the position and light source intensity.

<u>Gouraud shading</u>: an efficient and resource-conscious vertex shading technique use to smoothen the shaded surface.

Phong shading: use to simulate specular highlight and shaded surface smoothen.

Cel shading

FLAT SHADING

PHONG SHADING

5. RENDERING (INTEGRATE, RUN, EXECUTE)

- The overall rendering process consists of 5 major steps:
 - Get a model
 - Place a camera
 - Identify light sources
 - Identify surface characteristic
 - Select shading technique
 - Rendering
 - Save file & output

THE END

QUESTION??

