. =UTeM OPENCOURSEWARE

Advanced Programming
(BETC 1353)

Week 3: Pointers (Part 2)

Dr. Abdul Kadir

abdulkadir@utem.edu.my

000

Learning Outcomes:

* Able to describe the concept of pointer
expression and pointer arithmetic

* Able to explain the relationship between
pointers and arrays

e Able to use arrays of pointers

* To apply pointers for sorting data using Bubble
sort

(OO0 z

The Relationship Between Pointe
and Arrays

e Arrays and pointers have closely relationship
— Array name is basically a constant pointer
— In other words, the array name is an address

— It is possible to use pointers to perform any array
subscripting operations

(OO0 ;

. . . (=UTeM
The Relationship Between Pointe '

and Arrays

* For examples:
Declare an integer array x[5] and an integer pointer xPtr

int x[5];
int *xPtr;

 To make the pointer points to the array:

xPtr = x;

— In front of b, no & because b is an address (array name is an address)
— It is equivalent to:

xPtr = &x[0];

(OO0 ’

(ZUTeM
The Relationship Between Poin

and Arrays (Cont..)
o After

xPtr = x; X

xPtr

(P11 point o x L]

 Then, you can use the notation ofoPtr[index] to
access any element in the array x.

* For example: xPtr[0] =45; to assing 45 to the first
element in x

(OO0

The Relationship Between Pointers '
and Arrays — An Example

A pointer can be used to point an array

 Example:
#include <iostream> data
ptr { A |
using namespace std;
. . = 33 77 88 22
int main ()

{

int data[] = {33, 77, 88, 22\ T T T T
int *ptr;

ptr[1] ptr[3]
ptr = data; // No & required ptr[0] ptr[2]

for (int J = 0; J_< 4; j++)
cout << ptrijl <<'® The pointer can be used
return 0; to access each element in

} the array

(OO0 :

eI

Pointers and Strings

 Astringis stored in an array of characters

* Therefore, you can used operations discussed in
several previous slides

 Example of a pointer and a string is illustrated in the
following function:

Pointer to character

int numOfChars (char *st)

{

@080

int index = 0;
while (st[index]
index++;

return index;

'= 0)

st

The array passed in
the argument
A

, \

ocw.utem.edu.m 7

Pointers and Strings — An Example

#include <iostream>
using namespace std;

int main ()

{
char text = "Test..123!";

cout << numOfChars (text) << endl;
\ J

Y
return 0O;

}

int numOfChars (char *st) Cachefunctmnwby
{ passing text
int index = 0;
while (st[index] !'= 0)
index++;

return index;

(OO0 ;

Exercise 4

* Write a function that receive a string and

display the string in the reverse. For example,

if the string of argument is “ABCDEF”, then the
result is

FEDCBA

(OO0 ;

UG

Pointers and Arrays

— Element x[2] Pir X
* You can access it with: ' '
o—
 (xPtr +2) nEEEEN

* In this case, 2 is the offset
to the pointer. Itis called
pointer/offset notation

* Generally, x[n] can be
accessed using * (xPtr +
n) where n is the index of
the array

(OO0 10

Pointers and Arrays

— Element x[2] Ptr "

* You can access it by
xPtr[2]

* |tis called
pointer/subscript notation

* So, xPtr[2] issame as
x[2]

* The other approach to
access it is
*(x+2)

(OO0 1

Arrays of Pointers

* Arrays can contain
pointers

* For example: an array of
strings

char *animal[3]

{

"Tiger",
"LiOfl",
"Elephant"

bi

 The array animal has

fixed size, but not for
strings

(OO0 12

eI

Dynamic Memory

* Dynamic memory means memory that can be
allocated or deallocated at run time

* |t allows to create or delete dynamic data
(variables) when the program run

* |tis useful for creating data structures such as
linked lists or queues

Created using dynamic memory

-

(OO0 1

eI

Dynamic Memory

* Two operators for allocating and deallocating memory:

The dynamic variable
— new : for creating a dynamic variable without name

Example: int *ptr = new int;
— delete: for deleting a dynamic variable .

Example: delete ptr; ptr .

e The use of new and delete

will be discussed in other chapter Deallocated so it can be
used to create other
dynamic variable

(OO0 14

Pointer Arithmetic Rules

* Four basic arithmetic operators are available
to be used on pointers: ++,--,+,-

 Examples:
ptr++;
ptr—--;
ptr = ptr + 1;
ptr = ptr - 1;

(OO0 1

. . . (=UTeM
Pointer Expressions and Pointer

Arithmetic
* Suppose, thereis a XPtr "
declaration as follows:

[—

int x[5];
int *xPtr;
 xPtr points to the

address of the first
elementx[0] after:

xPtr = x;
OR
vPtr = &x[O0];

(OO0 16

@080

Pointer Expressions and Pointer

Arithmetic
— Performing expression
such as follows is thrj]
oHowed LT
0 1 2 4
XPtr += 2;

— In this case, xPtr will

point the third element
of x

ocw.utem.edu.m

17

Pointer Expressions and Pointer
Arithmetic

thrj l

— Before xPtr++; - - _
xPtr l

— After xPtr++; - _j

(OO0 18

Example: Application of Pointer for—
Sorting Data Using Bubble Sort

e Usually, bubble sort are implemented by using
array

* However, we will implement it using pointers

* Pointers are used to
— Display the data
— Swap to data
— Handle sorting

(OO0 19

Example : Bubble Sort

#include <iostream>
#include <iomanip>

const int MAX DATA = 12;
using namespace std;

void displayData(int *data, int num);
void swap(int *x, int *y);
void bubbleSort(int *data, int num);

int main()
{
int data[MAX DATA] =
{6, 8, 2, 1, 2, 67, 12, 34, 7, 45, 89, 21};

cout << "Before sorting:" << endl;
displayData(data, MAX DATA);

bubbleSort(data, MAX DATA);
cout << "After sorting:" << endl;
displayData(data, MAX DATA);

return 0O;

@080

void displayData(int *data, int num)
{
for (int j = 0; j < num; j++)
cout << setw(4) << dataljl:

cout << endl;
}

void bubbleSort(int *data, int num)
{

for (int phase 0; phase < num - 1; phase+t+)
for (int j 0; j < num - 1; j++)
if (data[j] > data[j + 1])
swap (&data[]j], &data[j + 11);

}

void swap(int *x, int *y)
{

int tmp = *x;

*x = *y;

*y = tmp;

ocw.utem.edu.m 20

