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Learning Outcomes:

• Able to describe the concept of pointer 
expression and pointer arithmetic

• Able to explain the relationship between 
pointers and arrays

• Able to use arrays of pointers

• To apply pointers for sorting data using Bubble 
sort
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The Relationship Between Pointers 
and Arrays

• Arrays and pointers have closely relationship

– Array name is basically a constant pointer

– In other words, the array name is an address

– It is possible to use pointers to perform any array 
subscripting operations
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The Relationship Between Pointers 
and Arrays

• For examples:
Declare an integer array x[5] and an integer pointer xPtr

int x[5];

int *xPtr;

• To make the pointer points to the array:

xPtr = x; 

– In front of b, no & because b is an address (array name is an address)
– It is equivalent to:

xPtr = &x[0];
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The Relationship Between Pointers 
and Arrays (Cont..)

• After

xPtr = x; 

xPtr point to x.

• Then, you can use the notation of xPtr[index] to 
access any element in the array x.

• For example: xPtr[0] = 45; to assign 45 to the first 
element in x

x
xPtr

5



The Relationship Between Pointers 
and Arrays – An Example

• A pointer can be used to point an array
• Example:

#include <iostream>

using namespace std;

int main()

{

int data[] = {33, 77, 88, 22};

int *ptr;

ptr = data; // No & required

for (int j = 0; j < 4; j++)

cout << ptr[j] << endl;

return 0;

}

The pointer can be used 
to access each element in 

the array

33 77 88 22

data
ptr

ptr[0]

ptr[1]

ptr[2]

ptr[3]
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Pointers and Strings

• A string is stored in an array of characters
• Therefore, you can used operations discussed in 

several previous slides
• Example of a pointer and a string is illustrated in the 

following function:

int numOfChars(char *st)

{

int index = 0;

while (st[index] != 0)

index++;

return index;

}

A B C

st

The array  passed in 
the argument

Pointer to character
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Pointers and Strings – An Example

#include <iostream>

using namespace std;

int main()

{

char text = ”Test..123!”;

cout << numOfChars(text) << endl;

return 0;

}

int numOfChars(char *st)

{

int index = 0;

while (st[index] != 0)

index++;

return index;

}

Call the function by 
passing text
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Exercise 4

• Write a function that receive a string and 
display the string in the reverse. For example, 
if the string of argument is “ABCDEF”, then the 
result is

FEDCBA
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Pointers and Arrays

– Element x[2]
• You can access it  with:

*(xPtr + 2)

• In this case, 2 is the offset 
to the pointer.  It is called 
pointer/offset notation

• Generally,  x[n] can be 
accessed using *( xPtr +
n )where n is the index of 
the array

x
xPtr
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Pointers and Arrays

– Element x[2]

• You can access it by

xPtr[2] 

• It is called 
pointer/subscript notation

• So, xPtr[2] is same as 
x[2]

• The other approach to 
access it is
*(x + 2)

x
xPtr
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Arrays of Pointers
• Arrays can contain 

pointers
• For example: an array of 

strings

char *animal[3] = 

{

"Tiger", 

"Lion",
"Elephant" 

};

• The array animal has 
fixed size,  but not for 
strings

T

animal

i g e r \0

L i o n \0

E l e p h a n t \0
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Dynamic Memory

• Dynamic memory means memory that can be 
allocated or deallocated at run time

• It allows to create  or delete dynamic data 
(variables) when the program run

• It is useful for creating data structures such as 
linked lists or queues

Created using dynamic memory
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Dynamic Memory

• Two operators for allocating and deallocating memory:

– new : for creating a dynamic variable

Example: int *ptr = new int;

– delete: for deleting a dynamic variable

Example: delete ptr;

• The use of new and delete 
will be discussed in other chapter

ptr

The dynamic variable 
without name

ptr

Deallocated so it can be 
used to create other 

dynamic variable
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Pointer Arithmetic Rules

• Four basic arithmetic operators are available 
to be used on pointers: ++,--,+,-

• Examples:
ptr++;

ptr--;

ptr = ptr + 1;

ptr = ptr – 1;
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Pointer Expressions and Pointer 
Arithmetic

• Suppose, there is a 
declaration as follows:
int x[5];

int *xPtr;

• xPtr points to the 
address of the first 
element x[ 0 ] after :

xPtr = x; 

OR

vPtr = &x[0];

x
xPtr

0 1 2 3 4
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Pointer Expressions and Pointer 
Arithmetic

– Performing expression 
such as follows is 
allowed:

xPtr += 2;

– In this case, xPtr will 
point the third element 
of x

x
xPtr

0 1 2 3 4
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Pointer Expressions and Pointer 
Arithmetic

– Before xPtr++;

– After xPtr++;

x
xPtr

0 1 2 3 4

x
xPtr

0 1 2 3 4
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Example: Application of Pointer for 
Sorting Data Using Bubble Sort

• Usually, bubble sort are implemented by using 
array

• However, we will implement it using pointers

• Pointers are used to

– Display the data

– Swap to data

– Handle sorting
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Example : Bubble Sort
#include <iostream>

#include <iomanip>

const int MAX_DATA = 12;

using namespace std;

void displayData(int *data, int num);

void swap(int *x, int *y);

void bubbleSort( int *data, int num);

int main()

{

int data[MAX_DATA] =

{6, 8, 2, 1, 2, 67, 12, 34, 7, 45, 89, 21};

cout << "Before sorting:"  << endl;

displayData(data, MAX_DATA);

bubbleSort(data, MAX_DATA);

cout << "After sorting:"  << endl;

displayData(data, MAX_DATA);

return 0;

}

void displayData(int *data, int num)

{

for (int j = 0; j < num; j++ )

cout << setw(4) << data[j];

cout << endl;

}

void bubbleSort( int *data, int num)

{

for (int phase = 0; phase < num - 1; phase++)

for (int j = 0; j < num - 1; j++)

if (data[j] > data[j + 1])

swap(&data[j], &data[j + 1]);

}

void swap(int *x, int *y)

{

int tmp = *x;

*x = *y;

*y = tmp;

}
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