
Advanced Programming
(BETC 1353)

Week 3: Pointers (Part 2)

Dr. Abdul Kadir

abdulkadir@utem.edu.my

Learning Outcomes:

• Able to describe the concept of pointer
expression and pointer arithmetic

• Able to explain the relationship between
pointers and arrays

• Able to use arrays of pointers

• To apply pointers for sorting data using Bubble
sort

2

The Relationship Between Pointers
and Arrays

• Arrays and pointers have closely relationship

– Array name is basically a constant pointer

– In other words, the array name is an address

– It is possible to use pointers to perform any array
subscripting operations

3

The Relationship Between Pointers
and Arrays

• For examples:
Declare an integer array x[5] and an integer pointer xPtr

int x[5];

int *xPtr;

• To make the pointer points to the array:

xPtr = x;

– In front of b, no & because b is an address (array name is an address)
– It is equivalent to:

xPtr = &x[0];

4

The Relationship Between Pointers
and Arrays (Cont..)

• After

xPtr = x;

xPtr point to x.

• Then, you can use the notation of xPtr[index] to
access any element in the array x.

• For example: xPtr[0] = 45; to assign 45 to the first
element in x

x
xPtr

5

The Relationship Between Pointers
and Arrays – An Example

• A pointer can be used to point an array
• Example:

#include <iostream>

using namespace std;

int main()

{

int data[] = {33, 77, 88, 22};

int *ptr;

ptr = data; // No & required

for (int j = 0; j < 4; j++)

cout << ptr[j] << endl;

return 0;

}

The pointer can be used
to access each element in

the array

33 77 88 22

data
ptr

ptr[0]

ptr[1]

ptr[2]

ptr[3]

6

Pointers and Strings

• A string is stored in an array of characters
• Therefore, you can used operations discussed in

several previous slides
• Example of a pointer and a string is illustrated in the

following function:

int numOfChars(char *st)

{

int index = 0;

while (st[index] != 0)

index++;

return index;

}

A B C

st

The array passed in
the argument

Pointer to character

7

Pointers and Strings – An Example

#include <iostream>

using namespace std;

int main()

{

char text = ”Test..123!”;

cout << numOfChars(text) << endl;

return 0;

}

int numOfChars(char *st)

{

int index = 0;

while (st[index] != 0)

index++;

return index;

}

Call the function by
passing text

8

Exercise 4

• Write a function that receive a string and
display the string in the reverse. For example,
if the string of argument is “ABCDEF”, then the
result is

FEDCBA

9

Pointers and Arrays

– Element x[2]
• You can access it with:

*(xPtr + 2)

• In this case, 2 is the offset
to the pointer. It is called
pointer/offset notation

• Generally, x[n] can be
accessed using *(xPtr +
n)where n is the index of
the array

x
xPtr

10

Pointers and Arrays

– Element x[2]

• You can access it by

xPtr[2]

• It is called
pointer/subscript notation

• So, xPtr[2] is same as
x[2]

• The other approach to
access it is
*(x + 2)

x
xPtr

11

Arrays of Pointers
• Arrays can contain

pointers
• For example: an array of

strings

char *animal[3] =

{

"Tiger",

"Lion",
"Elephant"

};

• The array animal has
fixed size, but not for
strings

T

animal

i g e r \0

L i o n \0

E l e p h a n t \0

12

Dynamic Memory

• Dynamic memory means memory that can be
allocated or deallocated at run time

• It allows to create or delete dynamic data
(variables) when the program run

• It is useful for creating data structures such as
linked lists or queues

Created using dynamic memory

13

Dynamic Memory

• Two operators for allocating and deallocating memory:

– new : for creating a dynamic variable

Example: int *ptr = new int;

– delete: for deleting a dynamic variable

Example: delete ptr;

• The use of new and delete
will be discussed in other chapter

ptr

The dynamic variable
without name

ptr

Deallocated so it can be
used to create other

dynamic variable

14

Pointer Arithmetic Rules

• Four basic arithmetic operators are available
to be used on pointers: ++,--,+,-

• Examples:
ptr++;

ptr--;

ptr = ptr + 1;

ptr = ptr – 1;

15

Pointer Expressions and Pointer
Arithmetic

• Suppose, there is a
declaration as follows:
int x[5];

int *xPtr;

• xPtr points to the
address of the first
element x[0] after :

xPtr = x;

OR

vPtr = &x[0];

x
xPtr

0 1 2 3 4

16

Pointer Expressions and Pointer
Arithmetic

– Performing expression
such as follows is
allowed:

xPtr += 2;

– In this case, xPtr will
point the third element
of x

x
xPtr

0 1 2 3 4

17

Pointer Expressions and Pointer
Arithmetic

– Before xPtr++;

– After xPtr++;

x
xPtr

0 1 2 3 4

x
xPtr

0 1 2 3 4

18

Example: Application of Pointer for
Sorting Data Using Bubble Sort

• Usually, bubble sort are implemented by using
array

• However, we will implement it using pointers

• Pointers are used to

– Display the data

– Swap to data

– Handle sorting

19

Example : Bubble Sort
#include <iostream>

#include <iomanip>

const int MAX_DATA = 12;

using namespace std;

void displayData(int *data, int num);

void swap(int *x, int *y);

void bubbleSort(int *data, int num);

int main()

{

int data[MAX_DATA] =

{6, 8, 2, 1, 2, 67, 12, 34, 7, 45, 89, 21};

cout << "Before sorting:" << endl;

displayData(data, MAX_DATA);

bubbleSort(data, MAX_DATA);

cout << "After sorting:" << endl;

displayData(data, MAX_DATA);

return 0;

}

void displayData(int *data, int num)

{

for (int j = 0; j < num; j++)

cout << setw(4) << data[j];

cout << endl;

}

void bubbleSort(int *data, int num)

{

for (int phase = 0; phase < num - 1; phase++)

for (int j = 0; j < num - 1; j++)

if (data[j] > data[j + 1])

swap(&data[j], &data[j + 1]);

}

void swap(int *x, int *y)

{

int tmp = *x;

*x = *y;

*y = tmp;

}

20

