
Advanced Programming
(BETC 1353)

Week 2: Pointers (Part 1)

Dr. Abdul Kadir

abdulkadir@utem.edu.my

Learning Outcome

• To learn the basic pointers and all pointer
operators

• To be able to use pointers for passing
arguments to functions using reference

2

Benefit of Pointers

• Pointers allows changing the
content of arguments in
calling functions

int main()

{

int x = 5;

increase(&x);

// Now x is 6

}

int increase(int *x)

{

*x = *x + 1;

}

3

Benefit of Pointers
• Useful for data structures, because pointers allows to point

the dynamic data (added or inserted anytime in the
computer memory)

Pointers

Non-pointers

4

Benefit of Pointers
• Fast operation in sorting data because it does not need to swap

the actual data -> Just swap the pointers

Paris

Amsterdam

New York

Jakarta

Kuala Lumpur

Bangkok

Tokyo

Vienna

Rome

Berlin

5

Pointer Variable Definition and
Initialization

• Pointers contain address of a variable

• Their content can be changed to point another variable anytime.

• Example:

• As a consequence, the content of price can be change directly using price
or indirectly using pricePtr

price

170 price is variable that

contains 170

price

170

pricePtr

pricePtr points to a variable
whose value is 170

6

Declaration

• Pointer declarations
– use * in front of the variable names to declare pointer variables

Syntax: datatype *varPtr;

– e.g.

int *myPtr;

or

int* myPtr;

– Data type int indicates that myPtr can be used to hold the address
of an integer variable

– is read as ”myPtr is a pointer to int” or “myPtr points
to an object of a type int”

7

Declaration

– Multiple pointers can be declared in a statement

– A symbol of * is needed in front of each pointer variable

– For example:

int *ptrA, *ptrB;

is same as

int *ptrA, *ptrB;

8

Self-Evaluation

• Notice the following declaration:

char *x, y;

• Is x a pointer?

• Is y a pointer?

9

Declaration

• Pointer declarations
– Can declare pointers to any data type

• e.g. float *discountPtr;

– By default, pointers are not initialized

– Initializing the pointers can be done by giving 0, NULL, or an address
• 0 or NULL means points to nothing (NULL preferred)

• For example:

float *discountPtr = 0;

– Rule of thumb: Always initialize pointers to prevent unexpected
results

10

Pointer Operators

• & (address operator)
– Returns the address of the operand

– Syntax:

pointer_name = &variable_name;

pointer_name variable_name pointer_name variable_name

Before pointer_name = &variable_name; After pointer_name = &variable_name;

Its content is the
address of

variable_name

11

Pointer Operators

• Example:
int x = 8;

int *xPtr;

xPtr = &x;

xPtr x

8

xPtr

4004 4000

x

4000 8

Address of x is value
of xPtr

xPtr gets address of x
xPtr “points to” x

12

Pointer Operators

• * (indirection/dereferencing operator)
– Returns the value of the object pointed by the pointer
– *xPtr returns the value of y (because yptr points to y)

– e.g.
cout << x;

cout << *xPtr;
• The output is 8

cout << *xPtr + 4;

• The output is 12

– * can be used for assignment
*xPtr = 7; // Now, x is 7

The content of x + 4

13

Example

int main()

{

float cost;

float *costPtr;

cost = 56.5;

costPtr = &cost;

value = *balptr;

cout<< “Cost is: " << *costPtr << endl;

cout<< “The address of cost is: ” << costPtr <<endl;

return 0;

}

What is the
output of this

line?

14

Exercise 1
• Suppose, the memory

addresses of the four
variables are as
follows:

 ch_a : 0x28feec
 ch_b : 0x28fee8
ptr :

0x28fee4
 tmp : 0x28fee0

• What are the contents
of ch_a, ch_b, ptr, and
tmp before return 0; is
executed?

#include <iostream>

using namespace std;

int main()

{

char ch_a = ‘A’;

char ch_b = ‘Z’;

char* ptr;

char tmp;

ptr = ch_a;

tmp = *ptr;

…

return 0;

}

15

Exercise 2
• What is the output for this example?

#include <iostream>

int main()

{

char x = ’A’, y = ’B’;

char *p1, *p2, *temp;

p1 = &x;

p2 = &y;

temp = p1;

p1 = p2;

p2 = temp;

cout << *p1 << ” “ << *p2;

}

16

Calling Functions by Reference

• Call by reference using pointer arguments
– Passing the address of the argument using &

operator

– Allows us to change the content of the variable

• * operator
– To allow us to change the content of variable outside

the function in a function
void increase(int *num)

{

*num = *num + 1;

}

– *num means “pointed by num”

parameter

17

Example
#include <iostream>

using namespace std;

void exchange(int *a, int *b)

{

int tmp;

tmp = *a;

*a = *b;

*b = tmp;

}

int main()

{

int m = 77, n = 88;

cout << "Original values: " << m << " " << n << endl;

exchange(&m, &n);

cout << "After swap(): " << m << " " << n << endl;

return 0;

}

Output:
Original values: m=77 n= 88
After swap(): m=88 n=77

18

What Happen when Reference is not
used?

#include <iostream>

using namespace std;

void exchange(int a, int b)

{

int tmp;

tmp = a;

a = b;

b = tmp;

}

int main()

{

int m = 77, n = 88;

cout << "Original values: " << m << " " << n << endl;

exchange(m, n);

cout << " "After swap(): " << m << " " << n << endl;

return 0;

}

Output:
Original values: m=77 n= 88
After swap(): m=77 n=88

19

Exercise 3 – What is the output of the
program?

#include <iostream>
using namespace std;

int main()
{

int *pC, pD;
int c = 78;
int d = 34;

pC = &c;
pD = &d;

cout << *pC << " "
<< *pD << endl;

pD = pC;

cout << *pC << " "

<< *pD << endl;

*pD = *pC + 3;

cout << *pC << " "

<< *pD << endl;

return 0;

}

20

