

NUMERICAL METHODS BEKG2452 NUMERICAL DIFFERENTIATION (First Derivative)

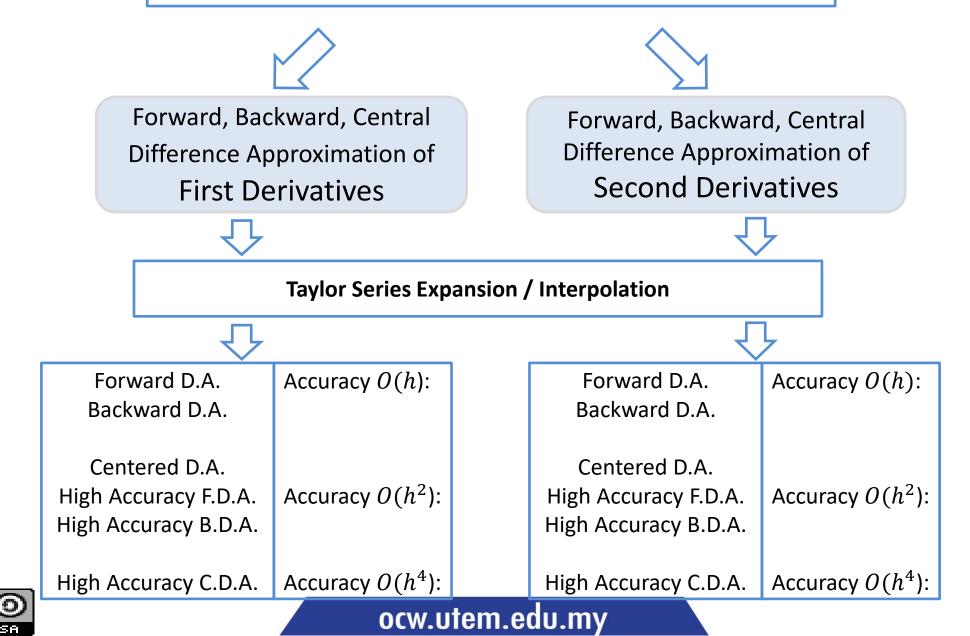
Irma Wani Jamaludin¹, Ser Lee Loh² <u>¹irma@utem.edu.my, ²slloh@utem.edu.my</u>

Learning Outcomes

- 1. Find the first derivative of a function by using forward, backward and central differencing approximation.
- 2. Find the first derivative of a function by using high accuracy differentiation formula.

Numerical Differentiation

(Estimating the derivative of a function at a specific point)



CC

5.1 Introduction

Why we need numerical differentiation?

Given a complicated function

i.e.
$$f(x) = [\cos(-9x^5 + e^{-2x})e^{x^2+4}]$$

Evaluate f''(-3.2).

Method 1

Step 1: Find the derivative of f' followed by f''. Step 2: Evaluate f''(-3.2).

Which one is faster and easier? Method 2

Method 2

Step 1: Construct some points from f(x), e.g. f(-5), f(-3), f(-1)Step 2: Evaluate f''(-3.2) by numerical differentiation.

5.1 Introduction

Taylor Series Expansion

A one-dimensional Taylor series is an expansion of a real function f(x) about a point x = a:

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \frac{f^{(3)}(a)}{3!}(x - a)^3 + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n + \dots$$

It is used to approximate the first and the second derivatives.

5.1 Introduction

- The first derivative of a function/ a set of data can be obtained by using:
 - **G** forward difference approximation
 - backward difference approximation
 - **c**entered difference approximation
 - □ high-accuracy difference formulas

1

Forward difference:

(use current value & future value to estimate derivative)- 2 points

or

$$f'(x) = \frac{f(x+h) - f(x)}{h}$$
$$f'(x_i) = \frac{f(x_{i+1}) - f(x_i)}{h}$$

 $O(h) = \varepsilon_t$ Accuracy:

Backward difference:

(use current value & previous value to estimate derivative)

$$f'(x) = \frac{f(x) - f(x-h)}{h}$$
$$f'(x_i) = \frac{f(x_i) - f(x_{i-1})}{h}$$

or

Accuracy:
$$O(h) = \varepsilon_t$$

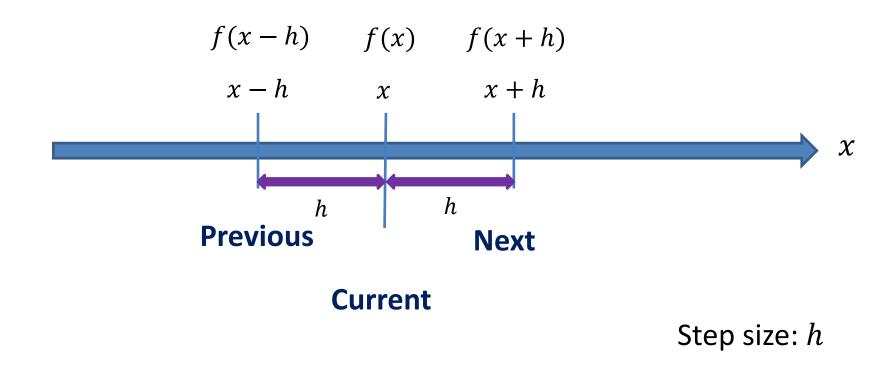
Centered difference:

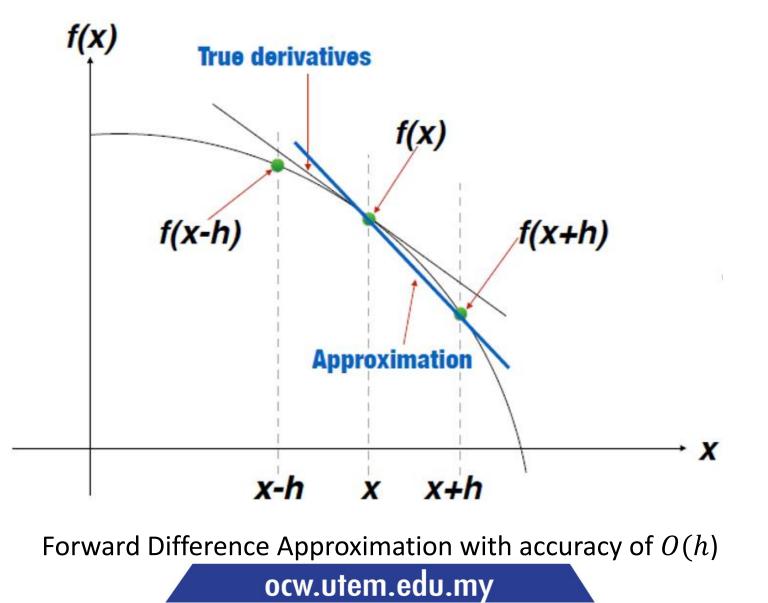
(subtract the backward from the forward Taylor series)

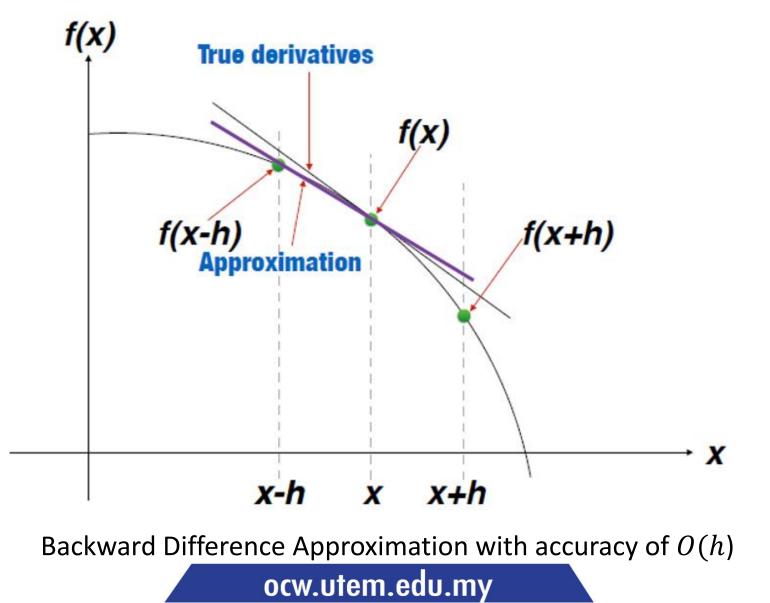
$$f'(x) = \frac{f(x+h) - f(x-h)}{2h}$$
$$f'(x_i) = \frac{f(x_{i+1}) - f(x_{i-1})}{2h}$$

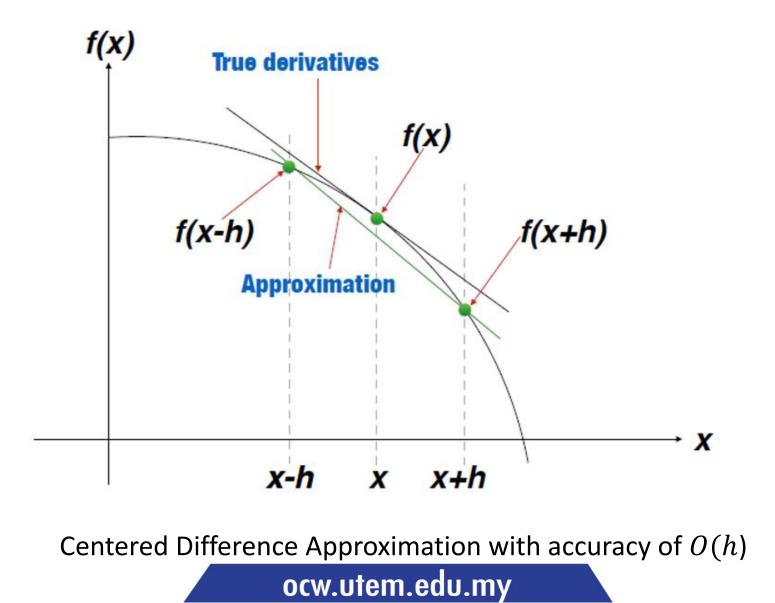
Accuracy:
$$O(h^2) = \varepsilon_t$$

Time Line:









UTeM

Estimate the first derivative of a function

$$f(x) = 0.13x^5 - 0.75x^3 + 0.12x^2 - 0.5x + 1$$

at x= 0.5 with a step size of h = 0.25 and h = 0.50 using:

- (a) forward and backward difference approximations of O(h)
- (b) centered difference approximation of $O(h^2)$ to estimate the first derivative of

Note that the derivative can be calculated directly as

 $f'(x) = 0.65x^4 - 2.25x^2 + 0.24x - 0.5$

and the true value as f'(0.5) = -0.901875. Hence, calculate the percent relative error for the cases above. Carry six decimal places along the computation.

Solution (a)

- For h = 0.25, the function $f(x) = 0.13x^5 0.75x^3 + 0.12x^2 0.5x + 1$ can be employed to obtain:
 - $x -h = 0.25 \rightarrow$ f(x h) = 0.870908 $x = 0.5 \rightarrow$ f(x) = 0.690313 $x + h = 0.75 \rightarrow$ f(x + h) = 0.406943
- For h = 0.50, the values are:

x −h = 0	\rightarrow	f(x-h) = 1.000000
x = 0.5	\rightarrow	f(x) = 0.690313
x +h = 1	\rightarrow	f(x+h)=0

• These values can be used to compute the forward, backward and centered difference approximation.

Solution (a)

• For *h* =0.25,

Forward difference approximation:

$$f'(0.5) \approx \frac{f(x+h) - f(x)}{h}$$
$$= \frac{0.406943 - 0.690313}{0.25} = -1.133480$$

Backward difference approximation:

$$f'(0.5) \approx \frac{f(x) - f(x - h)}{h}$$
$$= \frac{0.690313 - 0.870908}{0.25} = -0.722380$$

Solution (a)

• For *h* =0.5,

Forward difference:

$$f'(0.5) \approx \frac{f(x+h) - f(x)}{h}$$
$$= \frac{0 - 0.690313}{0.5} = -1.380626$$

Backward difference:

$$f'(0.5) \approx \frac{f(x) - f(x - h)}{h}$$
$$= \frac{0.690313 - 1.000000}{0.5} = -0.619374$$

Solution (b)

• For centered divided difference,

When h=0.25:

$$f'(0.5) \approx \frac{f(x+h) - f(x-h)}{2h}$$
$$= \frac{0.406943 - 0.870908}{2(0.25)} = -0.927930$$

When h=0.5:

$$f'(0.5) \approx \frac{f(x+h) - f(x-h)}{2h}$$
$$= \frac{0 - 1.00000}{2(0.5)} = -1.00000$$

Solution (percent relative error)

h	Method	Approximate value	Percent relative error
	Forward	-1.133480	$\frac{ -0.901875 - (-1.133480) }{ -0.901875 } \times 100\% = \mathbf{25.680388\%}$
0.25	Backward	-0.722380	$\frac{ -0.901875 - (-0.722380) }{ -0.901875 } \times 100\% = \mathbf{19.902426\%}$
	Centred	-0.927930	$\frac{ -0.901875 - (-0.927930) }{ -0.901875 } \times 100\% = 2.888981\%$
	Forward	-1.380626	$\frac{ -0.901875 - (-1.380626) }{ -0.901875 } \times 100\% = 53.083964\%$
0.5	Backward	-0.619374	$\frac{ -0.901875 - (-0.619374) }{ -0.901875 } \times 100\% = \mathbf{31.323742\%}$
	Centred	-1.00000	$\frac{ -0.901875 - (-1.000000) }{ -0.901875 } \times 100\% = 10.880111\%$

Use forward, backward and centered difference to estimate the first derivative of $f(t) = e^{-\sin t}$ at t = 1 using step size of 0.5.

Solution:

 $f'(t) = -e^{-\sin t} \cos t$ f'(1) = -0.232911

Analytic solution

<i>t –h</i> = 0.5	\rightarrow	f(t-h) = 0.619139
t = 1.0	\rightarrow	f(t) = 0.431076
<i>t</i> + <i>h</i> = 1.5	\rightarrow	f(t+h) = 0.368802

f'(1) = -0.232911

Method	Approximate value	Percent relative error
Forward	$f'(1) \approx \frac{f(t+h) - f(t)}{h} = \frac{\frac{0.368802 - 0.431076}{0.5}}{0.5} = -0.124548$	21.6726%
Backward	$f'(1) \approx \frac{f(t) - f(t - h)}{h} = \frac{0.431076 - 0.619139}{0.5} = -0.376126$	28.643%
Centred	$f'(1) \approx \frac{f(t+h) - f(t-h)}{2h} = \frac{0.368802 - 0.619139}{2(0.5)} = -0.250337$	1.7426% Error reduce
	ocw.utem.edu.my	

Given the data

x	2.5	2.6	2.7	2.8	2.9	3.0	3.1
<i>f</i> (x)	13.625	15.376	17.283	19.352	21.589	24.000	26.591

Use forward and backward difference approximations of O(h) to estimate f'(2.7) using the step size h=0.2.

Forward difference approximation:

$$f'(2.7) \approx \frac{f(x+h) - f(x)}{h} = \frac{21.589 - 17.283}{0.2} = 21.53$$

Backward difference approximation:

$$f'(2.7) \approx \frac{f(x) - f(x-h)}{h} = \frac{17.283 - 13.625}{0.2} = 18.29$$

Estimate the first derivative of a function

 $f(t) = 3\sin 2t$

at t = 0.5 with a step size of h = 0.25 using forward and backward difference approximation of O(h) and centred difference approximation of $O(h^2)$.

ANSWER:

Forward *O*(*h*)=1.8724, Backward *O*(*h*)=4.3444, Centered *O*(*h*²)=3.1084

5.3 High Accuracy Differentiations Formula

• Generated from 2 Taylor series expansions.

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2!}f''(x) + \dots \quad (1)$$
$$f(x+2h) = f(x) + 2hf'(x) + \frac{(2h)^2}{2!}f''(x) + \dots \quad (2)$$

(1) X 4:

$$4f(x+h) = 4f(x) + 4hf'(x) + \frac{4h^2}{2!}f''(x) + \cdots$$
(3)

(3) - (2) will becomes:

$$4f(x+h) - f(x+2h) = 3f(x) + 2hf'(x)$$

5.3 High Accuracy Differentiations Formula

• Forward difference approximation: $O(h^2)$

$$f'(x) \approx \frac{1}{2h} [-f(x+2h) + 4f(x+h) - 3f(x)]$$

• Backward difference approximation: $O(h^2)$

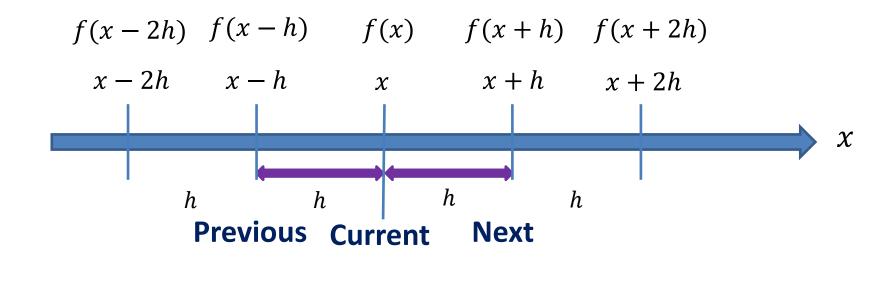
$$f'(x) \approx \frac{1}{2h} [3f(x) - 4f(x-h) + f(x-2h)]$$

Centered difference approximation: O(h⁴)

$$f'(x) \approx \frac{1}{12h} \left[-f(x+2h) + 8f(x+h) - 8f(x-h) + f(x-2h) \right]$$

5.3 High Accuracy Differentiations Formula

Time Line:



Step size: *h*

5.3 High Accuracy Differentiations Formula Example

Use high accuracy formula to estimate the first derivative of:

$$f(x) = 0.13x^5 - 0.75x^3 + 0.12x^2 - 0.5x + 1$$

at x = 0.5 and step size of h = 0.25.

x = 0.5	$\rightarrow f(x) = 0.6903$
x - h = 0.25	$\rightarrow f(x-h) = 0.8709$
x - 2h = 0	$\rightarrow f(x-2h) = 1$
x + h = 0.75	$\rightarrow f(x+h) = 0.4069$
x + 2h = 1	$\rightarrow f(x+2h) = 0$

Forward difference approximation, $O(h^2)$

$$f'(0.5) \approx \frac{1}{2h} [4f(x+h) - f(x+2h) - 3f(x)]$$
$$= \frac{1}{2(0.25)} [4(0.4069) - 0 - 3(0.6903)] = -0.8866$$

x = 0.5	$\rightarrow f(x) = 0.6903$
x - h = 0.25	$\rightarrow f(x-h) = 0.8709$
x - 2h = 0	$\rightarrow f(x-2h) = 1$
x + h = 0.75	$\rightarrow f(x+h) = 0.4069$
x + 2h = 1	$\rightarrow f(x+2h) = 0$

Backward difference approximation, $O(h^2)$

$$f'(0.5) \approx \frac{1}{2h} [3f(x) - 4f(x - h) + f(x - 2h)]$$
$$= \frac{1}{2(0.25)} [3(0.6903) - 4(0.8709) + 1)] = -0.8254$$

x = 0.5	$\rightarrow f(x) = 0.6903$
x - h = 0.25	$\rightarrow f(x-h) = 0.8709$
x - 2h = 0	$\rightarrow f(x-2h) = 1$
x + h = 0.75	$\rightarrow f(x+h) = 0.4069$
x + 2h = 1	$\rightarrow f(x+2h) = 0$

Centred difference approximation, $O(h^4)$

$$f'(0.5) \approx \frac{1}{12h} \left[-f(x+2h) + 8f(x+h) - 8f(x-h) + f(x-2h) \right]$$
$$= \frac{1}{12(0.25)} \left[-0 + 8(0.4069) - 8(0.8709) + 1 \right] = -0.904$$

Method	Approximate value	Percent relative error
Forward	-0.8866	1.694%
Backward	-0.8254	8.480%
Centred	-0.904	0.2356%

5.3 High Accuracy Differentiations Formula Exercise 1

Use high accuracy formula of $O(h^2)$ and $O(h^4)$ to estimate the first derivative of

$$f(t) = e^{-\sin t}$$

at t = 1 using step size of 0.25.

ANSWER:

Forward $O(h^2) = -0.22699$; Backward $O(h^2) = -0.22157$; Centered $O(h^4) = -0.23296$

5.3 High Accuracy Differentiations Formula Exercise 2

Given the following data

t	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
X	0.231	0.451	0.511	0.623	0.687	0.731	0.882	0.903	0.922	0.987

Find the first derivative using high accuracy formula of $O(h^2)$ and $O(h^4)$ at t = 0.6, with h = 0.2.

ANSWER:

Forward $O(h^2) = 0.864$; Backward $O(h^2) = 0.304$; Centered $O(h^4) = 0.568$

