
Advanced Programming
(BETC 1353)

Week 1 : Introduction to C++

Rosziana Binti Hashim
rosziana@utem.edu.my

Learning Outcome

At the end of this lecture, you should be able
to:

• Use the basic Input / Output
• Declare and use C++ Data types
• Write general form of C++ program
• Use Arithmetic operation in C++ program
• Identify common programming errors

2

The History

C Language
C++

language

Developed by Dennis
Ritchie at AT&T Bell Labs
in 1970s

- Used to maintain UNIX
systems

- Many commercial
applications written in C

Developed by Bjarne
Stroustrup ar AT&T Bells
Labs in 1980s
- overcome several

shortcomings of C
- Incorporated object

oriented programming
- C++ is an “extension” of
- C language
Remain as subset of C++

Differences Between C and C++..

4

• All function must be
prototyped

• Support “Object Oriented
Programming”

C++

• C prototyped are
recommended but
technically optionalC

General Form of C++ program
• C++ program starts as below

#include <iostream>
using namespace std;

int main()
{

/* program code */

•
return 0;

}

Explanation

#include <iostream>

• #include directive(Prepocessor directive) tells the
compiler to include some already existing C++ code
in the program

• Must include the file name (header file eg: iostream)

• The preprocessor inserts all contents of the
indicated file into the program

• The include file is then linked with the program

• There are two form of #include statement ;

#include <iostream> //for pre-defined files

#include "my_lib.h" //for user-defined files

Explanation

using namespace std;

• This statement is called a using directive.

• The latest version of C++ standard divide names
(e.g. cin and cout) into sub collections of names
called namespaces.

• This particular using directive says the program
will be using names that have a meaning defined
for them in the std namespace

• In this case the iostream header defines meaning
for cout and cin in the std namespace

Basic Input Output : cout

Use the cout object to display information on the computer’s screen

cout << expression;

Consider the following program statement

cout <<“Hello World”<< endl;

- cout (see-out)
used for output to
the monitor
- it is a stream

object

- “<<” operator is used to
send string “HELLO World ”
to cout.
- In the case the << symbol is
called the stream insertion
operator

Stream manipulator endl
(“end-line”) cause a new
line to be started on the
monitor

Basic Input Output : cin

The cin object is useful for reading data from the keyboard

cin >> variables;

Consider the following program statement

cin >> number_of_pods;

- cin (see-in) used for input
from the keyboard
- it get characters from the

stream object on the left of
“>>” and then stores it to the
variable

- “>>” is the stream
extraction operator
- The cin objects will
continue waiting new data
until the [ENTER] key is
pressed

Basic Input Output : cin
cin object : Deal with string and char

• The problem while using cin with the >> operator for entering strings

• getline function :

Reads an entire line, including any white spaces and stores it in
string objects.

• cin :

The input stream we are reading from

• inputLine :

The name of the string object receiving the input

- Any leading whitespace characters (space, tabs or line break will
be ignores and passes over)

- It stop reading when it comes to the next whitespace character

USE

getline (cin, inputLine) ;

Basic Input Output : cin
cin object : Deal with string and char

• The problem while use cin with the >> operator for entering strings

• get member function :

Reads any single character.

• Ch :

The name of a char variable that the character is being read into

- It is impossible to input just a whitespace or [ENTER] with cin >>
since it passes over all whitespaces

- The cin statement will not be passed until some characters others
than [ENTER] key, tab key or spacebar has been pressed.

USE

cin.get(ch) ; or

ch = cin.get() ;

;

Mixing cin >> and cin.get

• A problem will occurred when mixing cin >> with cin.get because cin >> and
cin.get use slightly different techniques for reading data.

cin.ignore(n, c) ;

• cin.ignore function tell the cin object to ignore one or more characters
entered using the keyboard.

• n is an integer and c is a character.

Example:

cin.ignore(10, ‘\n’) ;

cin will ignore the next 10 characters or until a newline is encountered,
whichever come first

• If no arguments are used, cin will skip only the very next character :

cin.ignore () ;

Basic Input Output : cin

Basic Command of Output

Escape
Sequence

Name Description

\t Horizontal Tab Takes the cursor to the next tab stop

\a Audible alert sound

\\ Backslash Displays a backslash (\)

\" Double Quote Displays a quotation mark (")

\v Vertical Tab Takes the cursor to the next tab stop vertically.

\' Apostrophe Displays an apostrophe (')

\n or endl New line Takes the cursor to the beginning of the next line

\? Question mark Displays a question mark

C++ Identifiers
• An identifier is a name for

 variable

 constant

 function, etc.

• It consists of a letter followed by any

 sequence of letters

 digits

 underscores.

• Examples of valid identifiers: father_name, year, y2015

• Examples of invalid identifiers: 2015y

• special characters are prohibited.

example: a=c, J-25, &Ricky,*Jackson

C++ Identifiers
 It allows programmers to name data and other objects in the

program such as constant, function, variable etc.

 Any capital letter (A~Z), lowercase letters (a~z), digits (0~9) and
also underscore (_) can be used

 Identifier’s Rules

o The first character must be alphabetic character or
underscore

o Only alphabetic characters, digits and underscores are
allowed and cannot contain spaces

o Duplicate any reserved word is prohibited

 C++ is case-sensitive; this means that CASE, Case, case, and CaSe
are four completely different words.

C++ Keywords
• Each keyword has a predefined purpose in the

language.
• All reserves word appear in lowercase.
• Keywords is prohibited to be used as variable and

constant names!!
• Some of the keyword that we will cover this class:
bool, break, case, char, const,
continue, do, default, double, else,
extern, false, float, for, if, int,
long, namespace, return, short,
static, struct, switch, typedef,
true, unsigned, void, while

C++ Datatypes

int

• Stands for integer

• Storing positive or negative whole number
– Fractional part is prohibited

• Examples:

int integerNumber; //declaring an integer

integerNumber = -123; //assign to negative

integerNumber = 547; //assign to positive

float

• Stands for floating point number
– Allowing fractional part

– About 7 digits of precision

• Can store negative or postive number

• Examples:

float floatNumber; // declare a float

floatNumber = -4.95412; //assign negative value

floatNumber = 11.91253; //assign positive value

double

• Similar to float, but have twice the digits of
precision

• Examples:

double doubleNum; // declare a double

doubleNum = -4.954119654123;

doubleNum = 11.912533651204;

char

• Variable to handle single character:
– Letters
– Digits
– Special characters

• Basically, any character listed in ASCII table
• Enclosed by single quotes ‘ ’.
• Example:

char myChar; // declare a char

myChar = ‘k’; // assign to a letter

myChar = ‘0’; // assign to a digit

string

• Basically, an array of multiple characters

• Enclosed by double quotes “ ”

• Example:

string firstString;

string lastString;

firstString = “Machu”;

lastString = “Picchu”;

cout << firstString + lastString ;

bool

• Boolean holding only two values: TRUE or FALSE

– Literally an integer with value 1 or 0, respectively

• Usually used in condition statements (if-else)

• Examples:

bool carLock; // declare a boolean

carLock = FALSE; // car is unlocked

carLock = TRUE; // car is locked

void

• For identifiers which has no values

• Used by function which does not returning any output

• Examples:

void DisplayHelloMessage()

{

cout << " Hello everyone!!" << endl;

cout << " Welcome to my program!" << endl;

}

Summary on C++ Datatype

Name Description Size in byte

int Integer number, positive or
negative

4

char Single character 1

float Floating number 4

double Double-precision floating
number

8

bool Boolean value (FALSE or TRUE) 1

operators

Arithmetic operators

Arithmetic

Subtract

-

Modulo

%

Multiply

*

Divide

/

Add

+

Arithmetic operators

• Example:

int var_1 = 3;

int var_2 = 6;

int res_1;

int res_2;

res_1 = var_2 + var_1; //res_1 = 6+3 = 9

res_2 = var_1 * var_2; //res_2 = 3*6 = 18

Relational operators

Relational

Equal to

‘==’

Not equal
to

‘!=’

Greater
than

‘>’

Less than

‘<’

Greater or
equal to

‘>=’

Less or
equal to

‘<=‘

Relational operators
• Example:
cout << “Enter your age: “;

cin >> myAge;

if (myAge > 60)

{

cout << “You must retire already!”;

}

else

{

cout << “You’re still fit.”

}

Relational operators

Enter your age: 65

You must retire already!

Enter your age: 35

You’re still fit.

Output:

Logical operators

Logical operators

• Example:

cout << “How old are you? “;

cin >> myAge;

cout << “What is your gender? “;

cin >> myGender;

if (myAge < 30 && myGender == ‘m’){

cout << “You are handsome and young!”;

} else if (myAge < 30 && myGender == ‘f’){

cout << “You must be a good looking young girl!”

} else {

cout << “You can take care of your appearance.”

}

Logical operators

How old are you? 26

What is your gender? m

You are handsome and young!”

How old are you? 35

What is your gender? f

You can take care of your appearance.

Output:

C++ comments

• explanatory notes

• ignored by the compiler.

• Two methods of commenting within a program:

– Using double slash //

Ex: // Explain on the following statements

– Using /* */

Ex: /* Commenting a portion of the code. This is suitable for
commenting multiple lines within the program.*/

Programming Errors

• Syntax errors
– Violation of programming language grammar rules
– Detected and notified by the compiler
– Examples:

• Missing semicolon ‘;’ , undeclared identifiers, etc.

• Run-time errors
– Errors detected by the system during running time
– Examples:

• Insufficient memory
• Segmentation fault

• Logical errors
– Mistakes in the implemented algorithm
– Undetectable by the compiler or computers, only known to the

programmers

Self-Review Questions

Question 1

Determine whether the following statements are valid or not?

a) int x = ‘3’;

b) float m = 3.12454;

c) char n = 1;

d) string mystr = “hello friends”;

Self-Review Questions

Answer:

a) int x = ‘3’;

ans: invalid since a character is assigned to an int variable

b) float m = 3.12454;

ans: valid

c) char n = 1;

ans: invalid since an integer is assigned to a char variable

d) string mystr = “hello friends”;

ans: valid

Self-Review Questions

Question 2

Write a program to calculate and the display the area of a
rectangle. The length and width must be entered from the
keyboard.

Self-Review Questions

Answer

int area, length, width;

cout << “Please enter the length: ” ;

cin >> length;

cout << “\nPlease enter the width: ”;

cin >> width;

area = width * length;

cout << “\n Area of rectangle is ” << area << endl;

