

MECHANISM DESIGN CHAPTER 6: GEARS AND OTHER MECHANISMS

OPENCOURSEWARE

Shamsul Anuar Shamsudin Mohd Nizam Sudin

GEARS

The main objectives to use gears are to transmit angular motion and torques from an input source to an output.

- Friction rollers can do the same too, but friction may reduce and affect efficiency adversely.
- Over the centuries, many shapes of gear tooth were invented, but modern design uses involute curves as part of the profile.
- The most common gear is the **spur gear**.

Source:

https://en.wikipedia.org/wiki/Gear#/media/File: Gears_animation.gif

https://commons.wikimedia.org/ wiki/File:Spur_gear.JPG

CC

BY NO ND

ocw.utem.edu.my

File:Worm_Gear.gif

GEAR TYPES

PARALLEL HELICAL GEARS – RH & LH

SPIRAL BEVEL GEARS

Source:

https://da.wikipedia.org/wiki/Tandhjul#/media /File:Anim_engrenages_helicoidaux.gif

<u>Source:</u> https://en.wikipedia.org/wiki/Bevel_gear# /media/File:Gear-kegelzahnrad.svg

GEAR TYPES

HARMONIC DRIVE

PLANETARY OR EPICYLCIC GEARS

Source:

NC ND

CC

https://en.wikipedia.org/wiki/Harmonic_drive #/media/File:Harmonic_drive_animation.gif

Source:

https://de.wikipedia.org/wiki/Umlaufr%C3%A4dergetriebe# /media/File:Planeetwielmechanisme.gif

ocw.utem.edu.my

5

GEAR TYPES

HERRINGBONE GEARS

Source:

https://en.wikipedia.org/wiki/Herringbone _gear#/media/File:Engrenages_-_85.488_-.jpg

GEAR SIZES

Gears can differ in size due to their **teeth number** (*N*). Since there cannot be partial teeth involved, N must be a positive integer. Sometimes, next to the value is 'T' that denotes teeth.

Another measure of size is **Diametral Pitch** (P_d) or DP. This can be in numbers like 3, 4, 5, 6, 8, 10, 12, 16, 20, 24, 32, and 48. The unit for P_d is teeth per inch or T/in. P_d gets larger, the size gets smaller.

$$P_d = \frac{N}{d}$$

Martin Sprocket or Boston Gears may have available stocks information as such:

http://www.martinsprocket.com/docs/default-source/catalog-gears/spur-gears.pdf?sfvrsn=14

http://www.bostongear.com/smartcat/pdf/116-006-24.pdf

GEAR SIZES

 $m = \frac{d}{N}$

The reciprocal is **module m** in metric. The unit is mm/T or just mm. Common values are 1, 1.25, 3, 3.5, 4, 5, 5.5, 6. 7 and 8, just to name a few. The bigger the number, the bigger the size.

KHK Gears may have available stocks information as such:

http://www.khkgears.co.jp/en/khk_products/stock_gears_introduction.html#hira

PRESSURE ANGLE (ϕ)

Source:

https://commons.wikimedia.org/wiki/Unwin% 27s_Construction#/media/File:Unwin%27s_ Construction_2.svg Source:

https://en.wikipedia.org/wiki/Gear#/media/File:Action _line.jpg

Standard pressure angles: $\phi = 14\frac{1}{2}^{\circ}$, 20°, 25°

Basically, for mating gears, they must have the same DP and ϕ . More theory at:

https://www.bostongear.com/pdf/gear_theory.pdf

CC

10

NOMENCLATURE

(cc)

BY NC

ND

11

EXAMPLE 1

Find the diametral pitch (DP or P_d) and the circular pitch of a 40-tooth gear, which has a pitch diameter (D or d) of 36.00 in.

CONTACT RATIO (m_p)

Average number of teeth in contact at any instance.

$$m_p = \frac{Z}{p_b}$$

Where (i) Base pitch (p_b) :

$$p_b = \frac{\pi d_1 \cos \phi}{N_1} = \frac{\pi d_2 \cos \phi}{N_2}$$

And (ii) Length of contact path (Z):

Z
=
$$\sqrt{(r_2 + a)^2 - (r_2 \cos \phi)^2} - r_2 \sin \phi$$

+ $\sqrt{(r_1 + a)^2 - (r_1 \cos \phi)^2} - r_1 \sin \phi$

□ Gears with larger m_p have smoother load transfer, hence $a = \frac{1}{P_d}$

Common values are between 1.4 and 1.5, but must be > 1.20

EXAMPLE 2

A 22-tooth pinion mates with a 42-tooth gear. The gears are full depth, have diametral pitch of 16 teeth/in, and are cut with a 20° pressure angle. Find the contact ratio.

Solution

Colution	
Given:	$N_1 = 22 T$, $N_2 = 42 T$, $P_d = 16 T/in$, $\emptyset = 20^{\circ}$
Find:	me
Solutions:	$m = \frac{P_d \left[\sqrt{(r_{p_1} + a_1)^2 - (r_{p_1} \cos \emptyset)^2} + \sqrt{(r_{p_2} + a_2)^2 - (r_{p_2} \cos \emptyset)^2} - CDsin \emptyset \right]}{(r_{p_1} + a_1)^2 - (r_{p_1} \cos \emptyset)^2} + \frac{P_d \left[\sqrt{(r_{p_1} + a_1)^2 - (r_{p_1} \cos \emptyset)^2} + \sqrt{(r_{p_2} + a_2)^2 - (r_{p_2} \cos \emptyset)^2} - CDsin \emptyset \right]}{(r_{p_1} + a_1)^2 - (r_{p_1} \cos \emptyset)^2} + \frac{P_d \left[\sqrt{(r_{p_1} + a_1)^2 - (r_{p_1} \cos \emptyset)^2} + \sqrt{(r_{p_2} + a_2)^2 - (r_{p_2} \cos \emptyset)^2} - CDsin \emptyset \right]}{(r_{p_1} + a_1)^2 - (r_{p_1} \cos \emptyset)^2} + \frac{P_d \left[\sqrt{(r_{p_1} + a_1)^2 - (r_{p_2} \cos \emptyset)^2} + \sqrt{(r_{p_2} + a_2)^2 - (r_{p_2} + a_2)^2 - (r_{p_2} + a_2)^2} + \sqrt{(r_{p_2} + a_2)^2 - (r_{p_2} + a_2)^2} + \sqrt{(r_{p_2} + a_2)^2 - (r_{p_2} + a_2)^2 - (r_{p_2} + a_2)^2 + \sqrt{(r_{p_2} + a_2)^2 - (r_{p_2} + a_2)^2} + \sqrt{(r_{p_2} + a_2)^2 - (r_{p_2} + a_2)^2} + \sqrt{(r_{p_2} + a_2)^2 - (r_{p_2} + a_2)^2} + \sqrt{(r_{p_2} + a_2)^2 - (r_{p_2} + a_2)^2 - (r_{p_2} + a_2)^2 + \sqrt{(r_{p_2}$
Solutions.	$m_p = \frac{1}{\pi \cos \phi}$
	$r_{p1} = \frac{N_1}{2P_d} = \frac{22}{2(16)} = 0.6875$ in
	$r_{p2} = \frac{N_2}{2P_d} = \frac{42}{2(16)} = 1.3125 in$
	$CD = r_{p1} + r_{p2} = 0.6875 + 1.3125 = 2.0$ in
	$a_1 = a_2 = a = \frac{1}{P_d} = \frac{1}{16} = 0.0625$ in
	$m_{p} = \frac{16 \left[\sqrt{(0.6875 + 0.0625)^{2} - (0.6875 \cos 20)^{2}} + \sqrt{(1.3125 + 0.0625)^{2} - (1.3125 \cos 20)^{2} - 2sin \ 20} \right]}{7 \cos 20}$
Therefore	$m_p = \frac{\pi}{\pi \cos 20}$
	= 1.6518 T
5	

INTERFERENCE

- This happens when tip of pinion clashes with the base of its mating gear.
- ✓ According to Boston Gear, this is prevalent when the number of teeth is small.
- ✓ For 14 $\frac{1}{2}$ ° PA, the minimum is 32 T; for 20° 18 T; while for 25° 12 T.
- ✓ Below these numbers the gears may need undercutting but there are limits with this approach too and it weakens the gear teeth.

Source:

https://commons.wikimedia.org/wiki/File:Undercuts.svg

GEAR KINEMATICS

An important concept is the gear ratio that relates the gear speed from input to output. Some use the term Velocity Ratio (VR) that evolves into Train Value (TV) or *e*.

Directions (in planar cases)

- + ω : CCW
- -ω: CW
- +VR: similar direction with that of pinion; e.g. An external gear drives an internal gear.
- -VR: opposite direction to that of pinion; e.g. An external gear drives another external gear with parallel axes.

Common forms:

$$VR = \frac{\omega_2}{\omega_3} = \frac{N_3}{N_2} = \frac{d_3}{d_2}$$

GEAR RATIO - CONTINUED

Many define the gear ratio as the ratio of faster input gear over the slower gear.

$$VR = \frac{\omega_2}{\omega_3} = \frac{N_3}{N_2}$$

However, some may define the gear ratio as the ratio of slower output gear over the faster pinion.

$$n_{2/3} = \frac{\omega_3}{\omega_2} = \frac{N_2}{N_3}$$

Nevertheless, it depends on what needs to be solved.

3

LINEAR VELOCITY

This is also called pitch line speed v_t . Sometime the unit is feet per minute (fpm). Angular speed should be in rad/s or rps.

The pitch line speed is used to find the suitable lubrication.

2.5 fpm

EXERCISE 1

Design a gear set that transmits power from a 4 hp motor at 1000 rpm to a grinding wheel at 250 rpm. Use the catalog either from Martin, Boston Gears or KHK.

WORM GEARS

- □ Can achieve high ratios in small spaces.
- □ Shafts are perpendicular and nonintersecting
- Self-locking: a must when involved heavy load.
- □ Unfortunately, only 40-50% efficient.

RH CASES

Palm down; thumb shows right handedness

EPICYCLIC OR PLANETARY GEARS

An epicyclic gear train with arm *A* as an output and sun 2 as an input as shown. The tooth numbers are $N_2 = 15$; $N_4 = 60$. If annulus or ring gear 4 is locked i.e. $\omega_4 = 0$ rpm, find the gear ratio of sun to arm.

Step	Number of rotation				
Step	A	4	2		
(a) Give all gears +1 rotation	+1	+1	+1		
(b) Hold arm A; rotate all gears	0	-1	X		
(c) Resulting motion [=step (a) + step (b)]	+1	0	Y		

GEAR SPEED ANALYSIS USING THE TABLE METHOD

Step	Number of rotation				
	A	4	2		
(a) Give all gears +1 rotation	+1	+1	+1		
(b) Hold arm A; rotate all gears	0		X		
Use as input in t	$= \omega_4$	$= \omega_2$			
	+1	0	Y		
(c) Resulting motion [=step (a) + step (b)]	$=\frac{\omega_A}{\omega_A}$	$=\frac{\omega_4}{\omega_A}$	$=\frac{\omega_2}{\omega_A}$		
		0, since this is fixed			

In step (b): Since in the end $N_4 = 0$ rpm, '-1' is given here so that the summation in row (c) will give '0'.

$$X = (-1)\left(+\frac{60}{N_3}\right)\left(-\frac{N_3}{15}\right) = +4$$

The relationship between an external gear and internal (ring) gear is that they rotate in the same direction. Hence, we give a '+' sign for their ratio. However, for external-external gears, their rotation directions are opposite, hence the '-' sign.

In step (c):

$$Y = +1 + X = +1 + 4 = +5$$

GEAR SPEED ANALYSIS USING THE FORMULA METHOD

$$\frac{\omega_L - \omega_A}{\omega_F - \omega_A} = \pm \frac{\prod N_p}{\prod N_g}$$

where ω_F is the angular speed of the first gear, ω_L is angular speed of the last gear, is $\prod N_p$ is the product of all teeth of pinion gears or gears that act as driver gears, and $\prod N_q$ is the product of driven gears.

$$\frac{0-\omega_A}{\omega_2-\omega_A} = \left(-\frac{N_2}{N_3}\right)\left(+\frac{N_3}{N_4}\right) = \left(-\frac{15}{N_3}\right)\left(+\frac{N_3}{60}\right)$$

$$-\omega_A = \left(-\frac{1}{4}\right)(\omega_2 - \omega_A)$$

$$\frac{\omega_2}{\omega_A} = +5$$

A cam can produce a mechanical motion where the input is rotational and output linear. Some output can be rotational too like a rocker arm follower.

See also tappets and push-rods.

Cams have many similarities with the motion by slider-cranks. However, they have higher control of different motions.

Source:

https://en.wikipedia.org/wiki/Cam#/media/File:

Nockenwelle_ani.gif

DISPLACEMENT DIAGRAMS

CC

TYPES OF CAMS

C

BΥ

NC ND

(cc)

TYPES OF FOLLOWERS

Position:

- \circ Inline
- \circ Offset

Motion:

- \circ Pivoted
- \circ Translating

Shape:

- \circ Roller
- \circ Knife edge
- \circ Spherical
- Flat-face

Source:

https://en.wiktionary.org/wiki/tappet#/media/File:Cam-disc-3_3D_animated.gif

STEPS IN DESIGNING A CAM

- Know how much time in each interval. Get the total time per revolution. Solve for angular speed.
- \succ Find the relationship between time and angles.
- Choose type of curve to follow in each motion interval.

EXAMPLE 3

A cam is synthesized according to these motion schemes.

- 1. Rise 20 mm with harmonic motion in 3 sec.
- 2. Dwell for 2 sec.
- 3. Fall in 1.5 sec with constant acceleration.
- 4. Dwell for 1.5 sec.

Then do the following.

- Develop a spreadsheet to plot a displacement diagram.
- Construct the profile of the cam.

<u>SOLUTION</u> – Spreadsheet

Height, H	15	Base Radius	10	mm				
Harmonic Motion							PROFILE	
t (s)	Angle (°)	ΔR	$\Delta R + R$	Type of I	Votion		х	У
0	0	0.000	10.000				0.0000	10.0000
0.5	18	0.571	10.571				3.2666	10.0535
1	36	2.197	12.197				7.1690	9.8673
1.5	54	4.630	14.630	Rise 4	cocin		11.8358	8.5992
2	72	7.500	17.500	harmonic			16.6435	5.4078
2.5	90	10.370	20.370	narmonic	motion		20.3701	0.0000
3	108	12.803	22.803				21.6872	-7.0466
3.5	126	14.429	24.429				19.7636	-14.3591
4	144	15.000	25.000				14.6946	-20.2254
		Dwell						
0	144	15.000	25.000				14.6946	-20.2254
0.5	162	15.000	25.000				7.7254	-23.7764
1	180	15.000	25.000	Dwell	2 sec		0.0000	-25.0000
1.5	198	15.000	25.000				-7.7254	-23.7764
2	216	15.000	25.000				-14.6946	-20.2254
	Con	stant Accelera	tion Moti	on				
0	216	15.000	25.000				-14.6946	-20.2254
0.5	234	13.125	23.125	Fall 2 aga im			-18.7085	-13.5925
1	252	7.500	17.500	Fall 2 sec in acceleratio			-16.6435	-5.4078
1.5	270	1.875	11.875	acceleratio	minotion		-11.8750	0.0000
2	288	0.000	10.000				-9.5106	3.0902
		Dwell						
0	288	0.000	10.000				-9.5106	3.0902
0.5	306	0.000	10.000				-8.0902	5.8779
1	324	0.000	10.000	Dwell 2 sec		-5.8779	8.0902	
1.5	342	0.000	10.000				-3.0902	9.5106
2	360	0.000	10.000				0.0000	10.0000

(CC)

NC

SOLUTION – Cam Profile

MOTION EQUATIONS AND FURTHER READINGS

- http://ocw.metu.edu.tr/pluginfile.php/6886/mod_ resource/content/1/ch8/8-3.htm
- https://www.cs.cmu.edu/~rapidproto/mechanisms/ chpt6.html
- http://www.camcoindex.com/svcman/moonbook.pdf

SCREW

(1) FASTENING

Source:

https://en.wikipedia.org/wiki/Simple_machine#/medi a/File:BOLT_SCREW_UBT_199.JPG

(2) MOVING OR CREATING MOTION

Source:

https://en.wikipedia.org/wiki/Scre w_(simple_machine)#/media/File :GearBoxRotLinScrew.gif

SCREW SHAPES

Source:

https://en.wikipedia.org/wiki/Screw_(simple_machine)#/media/File:Screw_thread_forms.png

SCREW BASICS

Source:

https://en.wikipedia.org/wiki/Screw_(simple_ machine)#/media/File:Screw_thread_handed ness.png

DISTANCE MOVED

$$s = l \frac{\theta^{\circ}}{360^{\circ}}$$

$$l = \{1, 2, 3\}$$

<u>Source:</u> https://commons.wikimedia.org/wiki/File:Pump.gif

BELT AND CHAIN

Read:

http://www.gatesmectrol.com/common/downlo ads/files/mectrol/brochure/GatesMectrol_Belt _Pulley_Catalog.pdf

Source:

https://en.wikipedia.org/wiki/Belt_(mechanical) #/media/File:Keilriemen-V-Belt.png

Read:

http://www.bmgworld.net/downloa ds/fennermanual/04CHAPTER2_ CHAINDRIVES.pdf

<u>Source:</u> https://en.wikipedia.org/wiki/ Chain_drive#/media/File:Ch ain.gif

GENEVA CAM & RATCHET

Source:

https://en.wikipedia.org/wiki/Geneva_drive#/ media/File:Geneva_mechanism_6spoke_an imation.gif

Source:

https://en.wikipedia.org /wiki/Ratchet_(device)# /media/File:Ratchet_ex ample.gif

THANK YOU ③

Main References:

 [1] Myszka, David H. 2012. Machines and Mechanism: Applied Kinematic Analysis, 4th ed., Prentice Hall, New York.

[2] Budynas, Richard G. and Nisbett, J. Keith. 2011. Shigley's Mechanical Engineering Design, 9th ed., McGraw Hill, New York.

Source:

https://en.wikipedia.org/wiki/Transmission_(mechanics) #/media/File:Gear_reducer.gif